Roger Lawes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3020250/publications.pdf Version: 2024-02-01

ROCEP LAWES

#	Article	IF	CITATIONS
1	Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects. Precision Agriculture, 2012, 13, 181-199.	3.1	148
2	Evaluation of weed eradication programs: the delimitation of extent. Diversity and Distributions, 2005, 11, 435-442.	1.9	88
3	Determinants of the proportion of break crops on Western Australian broadacre farms. Crop and Pasture Science, 2010, 61, 203.	0.7	57
4	Integrating the effects of climate and plant available soil water holding capacity on wheat yield. Field Crops Research, 2009, 113, 297-305.	2.3	56
5	Towards a national, remote-sensing-based model for predicting field-scale crop yield. Field Crops Research, 2018, 227, 79-90.	2.3	54
6	Crop area increases drive earlier and dry sowing in Western Australia: implications for farming systems. Crop and Pasture Science, 2016, 67, 1268.	0.7	49
7	Seeking simultaneous improvements in farm profit and natural resource indicators: a modelling analysis. Animal Production Science, 2009, 49, 826.	0.6	39
8	Needle in a haystack: Mapping rare and infrequent crops using satellite imagery and data balancing methods. Remote Sensing of Environment, 2019, 233, 111375.	4.6	37
9	Evaluation of the Australian Branched Broomrape (Orobanche ramosa) Eradication Program. Weed Science, 2007, 55, 644-651.	0.8	34
10	A longitudinal examination of business performance indicators for drought-affected farms. Agricultural Systems, 2012, 106, 94-101.	3.2	33
11	The Land Use Sequence Optimiser (LUSO): A theoretical framework for analysing crop sequences in response to nitrogen, disease and weed populations. Crop and Pasture Science, 2010, 61, 835.	0.7	32
12	Whole farm implications on the application of variable rate technology to every cropped field. Field Crops Research, 2011, 124, 142-148.	2.3	30
13	A Simple Method for the Analysis of Onâ€Farm Strip Trials. Agronomy Journal, 2012, 104, 371-377.	0.9	30
14	How well can APSIM simulate nitrogen uptake and nitrogen fixation of legume crops?. Field Crops Research, 2016, 187, 35-48.	2.3	28
15	Sacrificial grazing of wheat crops: identifying tactics and opportunities in Western Australia's grainbelt using simulation approaches. Animal Production Science, 2009, 49, 797.	0.6	27
16	Predicting Cereal Root Disease in Western Australia Using Soil DNA and Environmental Parameters. Phytopathology, 2015, 105, 1069-1079.	1.1	26
17	Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure. International Journal of Remote Sensing, 2019, 40, 5973-5991.	1.3	26
18	The shifting influence of future water and temperature stress on the optimal flowering period for wheat in Western Australia. Science of the Total Environment, 2020, 737, 139707.	3.9	23

Roger Lawes

#	Article	IF	CITATIONS
19	A bio-economic evaluation of the profitability of adopting subtropical grasses and pasture-cropping on crop–livestock farms. Agricultural Systems, 2012, 106, 102-112.	3.2	22
20	Nationwide crop yield estimation based on photosynthesis and meteorological stress indices. Agricultural and Forest Meteorology, 2020, 284, 107872.	1.9	22
21	Applications of industry information in sugarcane production systems. Field Crops Research, 2005, 92, 353-363.	2.3	21
22	Assessing regional farming system diversity using a mixed methods typology: the value of comparative agriculture tested in broadacre Australia. Geoforum, 2018, 90, 183-205.	1.4	21
23	Optimal Nitrogen Rate Can Be Predicted Using Average Yield and Estimates of Soil Water and Leaf Nitrogen with Infield Experimentation. Agronomy Journal, 2019, 111, 1155-1164.	0.9	20
24	Applying more nitrogen is not always sufficient to address dryland wheat yield gaps in Australia. Field Crops Research, 2021, 262, 108033.	2.3	19
25	How will the next-generation of sensor-based decision systems look in the context of intelligent agriculture? A case-study. Field Crops Research, 2021, 270, 108205.	2.3	17
26	Grain yield responsiveness to water supply in near-isogenic reduced-tillering wheat lines – An engineered crop trait near its upper limit. European Journal of Agronomy, 2019, 102, 33-38.	1.9	16
27	Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?. Climatic Change, 2020, 159, 347-364.	1.7	16
28	Trends in grain production and yield gaps in the high-rainfall zone of southern Australia. Crop and Pasture Science, 2016, 67, 921.	0.7	15
29	Commercially available wheat cultivars are broadly adapted to location and time of sowing in Australia's grain zone. European Journal of Agronomy, 2016, 77, 38-46.	1.9	15
30	How well do we need to estimate plant-available water capacity to simulate water-limited yield potential?. Agricultural Water Management, 2019, 212, 441-447.	2.4	15
31	Effect of subtropical perennial grass pastures on nutrients and carbon in coarse-textured soils in a Mediterranean climate. Soil Research, 2012, 50, 551.	0.6	14
32	Pasture cropping with C4 grasses in a barley–lupin rotation can increase production. Crop and Pasture Science, 2014, 65, 1002.	0.7	14
33	Spatial patterns of estimated optimal flowering period of wheat across the southwest of Western Australia. Field Crops Research, 2020, 247, 107710.	2.3	14
34	Selecting higher nutritive value annual pasture legumes increases the profitability of sheep production. Agricultural Systems, 2021, 194, 103272.	3.2	14
35	The evaluation of the spatial and temporal stability of sugarcane farm performance based on yield and commercial cane sugar. Australian Journal of Agricultural Research, 2004, 55, 335.	1.5	13
36	Gaining insight into the risks, returns and value of perfect knowledge for crop sequences by comparing optimal sequences with those proposed by agronomists. Crop and Pasture Science, 2015, 66, 622.	0.7	13

Roger Lawes

#	Article	IF	CITATIONS
37	Evaluating the contribution of take-all control to the break-crop effect in wheat. Crop and Pasture Science, 2013, 64, 563.	0.7	12
38	Capturing the in-field spatial - temporal dynamic of yield variation. Crop and Pasture Science, 2009, 60, 834.	0.7	11
39	Modelling phenological and agronomic adaptation options for narrow-leafed lupins in the southern grainbelt of Western Australia. European Journal of Agronomy, 2017, 89, 140-147.	1.9	10
40	Comparing agglomerative clustering and three weed classification frameworks to assess the invasiveness of alien species across spatial scales. Diversity and Distributions, 2006, 12, 633-644.	1.9	9
41	Genotype × environment interactions for phenological adaptation in narrow-leafed lupin: A simulation study with a parameter optimized model. Field Crops Research, 2016, 197, 28-38.	2.3	8
42	Comparative agriculture methods capture distinct production practices across a broadacre Australian landscape. Agriculture, Ecosystems and Environment, 2016, 233, 381-395.	2.5	7
43	Does re-vegetating poor-performing patches in agricultural fields improve ecosystem function in the northern sandplain of the Western Australian wheatbelt?. Crop and Pasture Science, 2009, 60, 912.	0.7	7
44	Modelling Within-Season Variation in Light Use Efficiency Enhances Productivity Estimates for Cropland. Remote Sensing, 2022, 14, 1495.	1.8	7
45	Considering long-term ecological effects on future land-use options when making tactical break-crop decisions in cropping systems. Crop and Pasture Science, 2015, 66, 610.	0.7	6
46	To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction. Remote Sensing, 2020, 12, 1653.	1.8	6
47	Statistical emulators of a plant growth simulation model. Climate Research, 2013, 55, 253-265.	0.4	6
48	Graincastâ"¢: monitoring crop production across the Australian grainbelt. Crop and Pasture Science, 2023, 74, 509-523.	0.7	5
49	Modelling the comparative growth, water use and productivity of the perennial legumes, tedera (Bituminaria bituminosa var. albomarginata) and lucerne (Medicago sativa) in dryland mixed farming systems. Crop and Pasture Science, 2017, 68, 643.	0.7	3
50	Climate drivers provide valuable insights into late season prediction of Australian wheat yield. Agricultural and Forest Meteorology, 2020, 295, 108202.	1.9	3
51	Methods to Study Agricultural Systems. Sustainable Agriculture Reviews, 2017, , 115-148.	0.6	2
52	Chickpea and lentil show little genetic variation in emergence ability and rate from deep sowing, but small-sized seed produces less vigorous seedlings. Crop and Pasture Science, 2022, , .	0.7	1