Justyna PÅ,otka-Wasylka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3020122/publications.pdf

Version: 2024-02-01

74 papers 5,465 citations

126708 33 h-index 72 g-index

76 all docs 76 docs citations

76 times ranked

4621 citing authors

#	Article	IF	CITATIONS
1	A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta, 2018, 181, 204-209.	2.9	991
2	Modern trends in solid phase extraction: New sorbent media. TrAC - Trends in Analytical Chemistry, 2016, 77, 23-43.	5.8	474
3	Miniaturized solid-phase extraction techniques. TrAC - Trends in Analytical Chemistry, 2015, 73, 19-38.	5.8	375
4	Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal, 2020, 159, 105539.	2.3	243
5	Extraction with environmentally friendly solvents. TrAC - Trends in Analytical Chemistry, 2017, 91, 12-25.	5.8	231
6	Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC - Trends in Analytical Chemistry, 2018, 98, 128-142.	5.8	220
7	Green analytical chemistry metrics: A review. Talanta, 2022, 238, 123046.	2.9	219
8	Green chromatography. Journal of Chromatography A, 2013, 1307, 1-20.	1.8	217
9	Complementary green analytical procedure index (ComplexGAPI) and software. Green Chemistry, 2021, 23, 8657-8665.	4.6	208
10	Liquid–phase microextraction: A review of reviews. Microchemical Journal, 2019, 149, 103989.	2.3	143
11	Application of molecularly imprinted polymers in analytical chiral separations and analysis. TrAC - Trends in Analytical Chemistry, 2018, 102, 91-102.	5.8	138
12	The role of water in deep eutectic solvent-base extraction. Journal of Molecular Liquids, 2020, 304, 112747.	2.3	134
13	Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 2020, 154, 104623.	2.3	116
14	Pharmaceutical and forensic drug applications of chiral supercritical fluid chromatography. TrAC - Trends in Analytical Chemistry, 2014, 56, 74-89.	5.8	98
15	Solid Phase Microextraction: Apparatus, Sorbent Materials, and Application. Critical Reviews in Analytical Chemistry, 2019, 49, 271-288.	1.8	96
16	Modern solutions in the field of microextraction using liquid as a medium of extraction. TrAC - Trends in Analytical Chemistry, 2016, 85, 46-64.	5.8	88
17	Combined extraction and microextraction techniques: Recent trends and future perspectives. TrAC - Trends in Analytical Chemistry, 2018, 103, 74-86.	5.8	84
18	Green analytical chemistry: Social dimension and teaching. TrAC - Trends in Analytical Chemistry, 2019, 111, 185-196.	5.8	84

#	Article	IF	CITATIONS
19	Direct solid phase microextraction combined with gas chromatography – Mass spectrometry for the determination of biogenic amines in wine. Talanta, 2018, 183, 276-282.	2.9	78
20	Determination and identification of organic acids in wine samples. Problems and challenges. TrAC - Trends in Analytical Chemistry, 2019, 120, 115630.	5.8	76
21	Prenatal exposure to substance of abuse: A worldwide problem. Environment International, 2013, 54, 141-163.	4.8	66
22	An in situ derivatization – dispersive liquid–liquid microextraction combined with gas-chromatography – mass spectrometry for determining biogenic amines in home-made fermented alcoholic drinks. Journal of Chromatography A, 2016, 1453, 10-18.	1.8	61
23	Chemical Derivatization Processes Applied to Amine Determination in Samples of Different Matrix Composition. Chemical Reviews, 2015, 115, 4693-4718.	23.0	53
24	New Polymeric Materials for Solid Phase Extraction. Critical Reviews in Analytical Chemistry, 2017, 47, 373-383.	1.8	53
25	Green Chemistry in Higher Education: State of the Art, Challenges, and Future Trends. ChemSusChem, 2018, 11, 2845-2858.	3.6	49
26	"Green―nature of the process of derivatization in analytical sample preparation. TrAC - Trends in Analytical Chemistry, 2018, 102, 16-31.	5.8	46
27	Application of deep eutectic solvents for separation and determination of bioactive compounds in medicinal plants. Industrial Crops and Products, 2021, 172, 114047.	2.5	44
28	Birds' feathers – Suitable samples for determination of environmental pollutants. TrAC - Trends in Analytical Chemistry, 2018, 109, 97-115.	5.8	43
29	Determination of Metals Content in Wine Samples by Inductively Coupled Plasma-Mass Spectrometry. Molecules, 2018, 23, 2886.	1.7	41
30	Detection, identification and determination of resveratrol in wine. Problems and challenges. TrAC - Trends in Analytical Chemistry, 2018, 103, 21-33.	5.8	40
31	Prediction of the Biogenic Amines Index of Poultry Meat Using an Electronic Nose. Sensors, 2019, 19, 1580.	2.1	40
32	Detection, identification and determination of chiral pharmaceutical residues in wastewater: Problems and challenges. TrAC - Trends in Analytical Chemistry, 2020, 122, 115710.	5.8	39
33	Dispersive liquid-liquid microextraction combined with gas chromatography–mass spectrometry for in situ determination of biogenic amines in meat: Estimation of meat's freshness. Microchemical Journal, 2019, 145, 130-138.	2.3	35
34	Supramolecular deep eutectic solvents and their applications. Green Chemistry, 2022, 24, 5035-5045.	4.6	35
35	Green analytical chemistry as an integral part of sustainable education development. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100508.	3.2	33
36	Application of additional factors supporting the microextraction process. TrAC - Trends in Analytical Chemistry, 2017, 97, 104-119.	5.8	31

#	Article	IF	CITATIONS
37	Organic Acids and Polyphenols Determination in Polish Wines by Ultrasound-Assisted Solvent Extraction of Porous Membrane-Packed Liquid Samples. Molecules, 2019, 24, 4376.	1.7	26
38	Recent trends in determination of neurotoxins in aquatic environmental samples. TrAC - Trends in Analytical Chemistry, 2019, 112, 112-122.	5.8	25
39	Are deep eutectic solvents useful in chromatography? A short review. Journal of Chromatography A, 2021, 1639, 461918.	1.8	24
40	Application of deep eutectic solvents in bioanalysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116660.	5.8	23
41	Remarks on use of the term "deep eutectic solvent―in analytical chemistry. Microchemical Journal, 2022, 179, 107498.	2.3	22
42	An analytical hierarchy process for selection of the optimal procedure for resveratrol determination in wine samples. Microchemical Journal, 2018, 142, 126-134.	2.3	20
43	Effects of Addictive Substances During Pregnancy and Infancy and Their Analysis in Biological Materials. Reviews of Environmental Contamination and Toxicology, 2014, 227, 55-77.	0.7	19
44	Ultrasound-assisted solvent extraction of porous membrane packed solid samples: A new approach for extraction of target analytes from solid samples. Microchemical Journal, 2019, 144, 117-123.	2.3	19
45	Green, simple analytical method for biogenic amines determination in fruit juice samples using salting-out assisted liquid-liquid microextraction and gas chromatography-mass spectrometry. Food Chemistry, 2022, 384, 132557.	4.2	18
46	Common methods for the chiral determination of amphetamine and related compounds II. Capillary electrophoresis and nuclear magnetic resonance. TrAC - Trends in Analytical Chemistry, 2012, 31, 23-37.	5.8	14
47	CE-MS and GC-MS as "Green―and Complementary Methods for the Analysis of Biogenic Amines in Wine. Food Analytical Methods, 2018, 11, 2614-2627.	1.3	14
48	Main complications connected with detection, identification and determination of trace organic constituents in complex matrix samples. TrAC - Trends in Analytical Chemistry, 2018, 105, 173-184.	5.8	14
49	Ferrofluids based analytical extractions and evaluation of their greenness. Journal of Molecular Liquids, 2021, 339, 116901.	2.3	14
50	Application of deep eutectic solvents in atomic absorption spectrometry. TrAC - Trends in Analytical Chemistry, 2022, 147, 116510.	5.8	14
51	End-of-life management of single-use baby diapers: Analysis of technical, health and environment aspects. Science of the Total Environment, 2022, 836, 155339.	3.9	14
52	Determination of Selected Metals in Fruit Wines by Spectroscopic Techniques. Journal of Analytical Methods in Chemistry, 2017, 2017, 1-9.	0.7	13
53	Impact of selected parameters of the fermentation process of wine and wine itself on the biogenic amines content: Evaluation by application of chemometric tools. Microchemical Journal, 2018, 142, 187-194.	2.3	13
54	Environmental problems and health risks with disposable baby diapers: Monitoring of toxic compounds by application of analytical techniques and need of education. TrAC - Trends in Analytical Chemistry, 2021, 143, 116408.	5.8	13

#	Article	IF	Citations
55	Metals and metal-binding ligands in wine: Analytical challenges in identification Trends in Food Science and Technology, 2021, 112, 382-390.	7.8	12
56	Characterization of home-made and regional fruit wines by evaluation of correlation between selected chemical parameters. Microchemical Journal, 2018, 140, 66-73.	2.3	10
57	Ultrasound assisted solvent extraction of porous membrane-packed samples followed by liquid chromatography-tandem mass spectrometry for determination of BADGE, BFDGE and their derivatives in packed vegetables. Science of the Total Environment, 2020, 708, 135178.	3.9	10
58	Classification of Polish wines by application of ultra-fast gas chromatography. European Food Research and Technology, 2018, 244, 1463-1471.	1.6	9
59	Nanosorbents as Materials for Extraction Processes of Environmental Contaminants and Others. Molecules, 2022, 27, 1067.	1.7	9
60	Chiral Analysis of Chloro Intermediates of Methylamphetamine by One-Dimensional and Multidimentional NMR and GC/MS. Analytical Chemistry, 2012, 84, 5625-5632.	3.2	8
61	Capillary gas chromatography using a \hat{l}^3 -cyclodextrin for enantiomeric separation of methylamphetamine, its precursors and chloro intermediates after optimization of the derivatization reaction. Journal of Chromatography A, 2014, 1347, 146-156.	1.8	8
62	Green Analytical Chemistry: Summary of Existing Knowledge and Future Trends. Green Chemistry and Sustainable Technology, 2019, , 431-449.	0.4	8
63	The impact of cold plasma on the phenolic composition and biogenic amine content of red wine. Food Chemistry, 2022, 381, 132257.	4.2	8
64	Evaluation of the Impact of Storage Conditions on the Biogenic Amines Profile in Opened Wine Bottles. Molecules, 2018, 23, 1130.	1.7	7
65	The content of biogenic amines in Rondo and Zweigelt wines and correlations between selected wine parameters. Food Chemistry, 2022, 371, 131172.	4.2	7
66	Evaluation of Green Sample Preparation Techniques for Organic Compounds. Current Green Chemistry, 2018, 5, 168-176.	0.7	7
67	A hierarchical porous composite magnetic sorbent of reduced graphene oxide embedded in polyvinyl alcohol cryogel for solventâ€assistedâ€solid phase extraction of polycyclic aromatic hydrocarbons. Journal of Separation Science, 2022, 45, 1774-1783.	1.3	7
68	Miniaturized Solid Phase Extraction. Comprehensive Analytical Chemistry, 2017, , 279-318.	0.7	5
69	Evaluation of the influence of grapevine growing conditions on wine quality. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2019, 150, 1579-1584.	0.9	3
70	Profiling of polar ionogenic metabolites in Polish wines by capillary electrophoresisâ€mass spectrometry. Electrophoresis, 2022, 43, 1814-1821.	1.3	3
71	Direct determination of cadaverine in the volatile fraction of aerobically stored chicken breast samples. Monatshefte Für Chemie, 2018, 149, 1521-1525.	0.9	1
72	New Achievements in the Field of Extraction of Trace Analytes from Samples Characterized by Complex Composition of the Matrix. Green Chemistry and Sustainable Technology, 2019, , 103-150.	0.4	1

#	Article	IF	CITATIONS
73	lonic liquids-based microextraction techniques. , 2016, , 189-232.		O
74	Multicriteria Decision Analysis and Grouping of Analytical Procedures for Phthalates Determination in Disposable Baby Diapers. Molecules, 2021, 26, 7009.	1.7	0