
Hao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3019999/publications.pdf Version: 2024-02-01

Ηλο ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Total Variation-Stokes Strategy for Sparse-View X-ray CT Image Reconstruction. IEEE Transactions on Medical Imaging, 2014, 33, 749-763.	5.4	91
2	Applications of nonlocal means algorithm in lowâ€dose Xâ€ray <scp>CT</scp> image processing and reconstruction: A review. Medical Physics, 2017, 44, 1168-1185.	1.6	79
3	Texture Feature Extraction and Analysis for Polyp Differentiation via Computed Tomography Colonography. IEEE Transactions on Medical Imaging, 2016, 35, 1522-1531.	5.4	75
4	Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Computerized Medical Imaging and Graphics, 2014, 38, 423-435.	3.5	64
5	Extracting Information From Previous Full-Dose CT Scan for Knowledge-Based Bayesian Reconstruction of Current Low-Dose CT Images. IEEE Transactions on Medical Imaging, 2016, 35, 860-870.	5.4	59
6	Deriving adaptive MRF coefficients from previous normalâ€dose CT scan for lowâ€dose image reconstruction via penalized weighted leastâ€squares minimization. Medical Physics, 2014, 41, 041916.	1.6	43
7	Iterative reconstruction for dual energy CT with an average image-induced nonlocal means regularization. Physics in Medicine and Biology, 2017, 62, 5556-5574.	1.6	43
8	Regularization strategies in statistical image reconstruction of lowâ€dose xâ€ray <scp>CT</scp> : A review. Medical Physics, 2018, 45, e886-e907.	1.6	35
9	Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Part II: An adaptive approach. Computerized Medical Imaging and Graphics, 2015, 43, 26-35.	3.5	34
10	Iterative quality enhancement via residual-artifact learning networks for low-dose CT. Physics in Medicine and Biology, 2018, 63, 215004.	1.6	31
11	Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis-Representation Tensor Sparsity Regularization. IEEE Transactions on Medical Imaging, 2017, 36, 2546-2556.	5.4	27
12	An Efficient Iterative Cerebral Perfusion CT Reconstruction via Low-Rank Tensor Decomposition With Spatial–Temporal Total Variation Regularization. IEEE Transactions on Medical Imaging, 2019, 38, 360-370.	5.4	27
13	A Feasibility Study of Extracting Tissue Textures From a Previous Full-Dose CT Database as Prior Knowledge for Bayesian Reconstruction of Current Low-Dose CT Images. IEEE Transactions on Medical Imaging, 2019, 38, 1981-1992.	5.4	24
14	Assessment of prior image induced nonlocal means regularization for lowâ€dose <scp>CT</scp> reconstruction: Change in anatomy. Medical Physics, 2017, 44, e264-e278.	1.6	14
15	Low-mAs X-ray CT image reconstruction by adaptive-weighted TV-constrained penalized re-weighted least-squares. Journal of X-Ray Science and Technology, 2014, 22, 437-457.	0.7	13
16	Correction to "Total Variation-Stokes Strategy for Sparse-View X-ray CT Image Reconstruction―[Mar 14 749-763]. IEEE Transactions on Medical Imaging, 2014, 33, 1004-1004.	5.4	13
17	Regularization Analysis and Design for Prior-Image-Based X-Ray CT Reconstruction. IEEE Transactions on Medical Imaging, 2018, 37, 2675-2686.	5.4	13
18	Full-Spectrum-Knowledge-Aware Tensor Model for Energy-Resolved CT Iterative Reconstruction. IEEE Transactions on Medical Imaging, 2020, 39, 2831-2843.	5.4	10

Hao Zhang

#	Article	IF	CITATIONS
19	Promote quantitative ischemia imaging via myocardial perfusion CT iterative reconstruction with tensor total generalized variation regularization. Physics in Medicine and Biology, 2018, 63, 125009.	1.6	8
20	A Task-Dependent Investigation on Dose and Texture in CT Image Reconstruction. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4, 441-449.	2.7	7
21	Contrast-Medium Anisotropy-Aware Tensor Total Variation Model for Robust Cerebral Perfusion CT Reconstruction With Low-Dose Scans. IEEE Transactions on Computational Imaging, 2020, 6, 1375-1388.	2.6	7
22	Characterization of tissueâ€specific preâ€log Bayesian CT reconstruction by texture–dose relationship. Medical Physics, 2020, 47, 5032-5047.	1.6	6
23	Different Lung Nodule Detection Tasks at Different Dose Levels by Different Computed Tomography Image Reconstruction Strategies. , 2018, , .		5
24	Iterative reconstruction for low dose dual energy CT using information-divergence constrained spectral redundancy information. Journal of X-Ray Science and Technology, 2018, 26, 311-330.	0.7	5
25	Artificial Intelligence in Radiation Therapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 158-181.	2.7	4
26	Adaptive nonlocal means-regularized iterative image reconstruction for sparse-view CT. , 2014, , .		3
27	Texture-preserved penalized weighted least-squares reconstruction of low-dose CT image via image segmentation and high-order MRF modeling. Proceedings of SPIE, 2016, , .	0.8	3
28	Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: first patient studies. , 2017, , .		3
29	Prospective image quality analysis and control for prior-image-based reconstruction of low-dose CT. , 2018, 10573, .		3
30	Texture-preserving Bayesian image reconstruction for low-dose CT. Proceedings of SPIE, 2016, , .	0.8	2
31	Characterizing CT Reconstruction of Pre-log Transmission Data toward Ultra-low Dose Imaging by Texture Measures. , 2018, , .		2
32	Statistical CT reconstruction using region-aware texture preserving regularization learning from prior normal-dose CT image. Physics in Medicine and Biology, 2018, 63, 225020.	1.6	2
33	Prior-image-based CT reconstruction using attenuation-mismatched priors. Physics in Medicine and Biology, 2021, 66, 064007.	1.6	2
34	Bayesian reconstruction of ultralow-dose CT images with texture prior from existing diagnostic full-dose CT database. , 2019, , .		2
35	Direct reconstruction of anatomical change in low-dose lung nodule surveillance. Journal of Medical Imaging, 2021, 8, 023503.	0.8	0
36	A feasibility study of extracting tissue textures from a previous normal-dose CT database as prior for Bayesian reconstruction of current ultra-low-dose CT images. , 2018, , .		0

#	Article	IF	CITATIONS
37	Markov random field texture generation with an internalized database using a conditional encoder-decoder structure. , 2022, , .		0