
Hongjun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/301993/publications.pdf Version: 2024-02-01

Ηονομίν Υλής

#	Article	IF	CITATIONS
1	Hybrid Copolymerization of ε-Caprolactone and Methyl Methacrylate. Macromolecules, 2012, 45, 3312-3317.	4.8	115
2	Radical Polymerization in the Presence of Chain Transfer Monomer: An Approach to Branched Vinyl Polymers. Macromolecules, 2012, 45, 4092-4100.	4.8	48
3	Synthesis of Poly[(ethylene carbonate)â€ <i>co</i> â€{ethylene oxide)] Copolymer by Phosphazeneâ€Catalyzed ROP. Macromolecular Chemistry and Physics, 2011, 212, 2589-2593.	2.2	39
4	Nylon 3 synthesized by ring opening polymerization with a metal-free catalyst. Polymer Chemistry, 2011, 2, 2888.	3.9	38
5	One-step synthesis of hyperbranched biodegradable polymer. RSC Advances, 2013, 3, 6853.	3.6	31
6	Highly Branched Copolymers with Degradable Bridges for Antifouling Coatings. ACS Applied Materials & Interfaces, 2020, 12, 16849-16855.	8.0	29
7	Polymerization behaviors and polymer branching structures in ATRP of monovinyl and divinyl monomers. Polymer Chemistry, 2013, 4, 3204.	3.9	28
8	Phosphazene-catalyzed oxa-Michael addition click polymerization. Polymer Chemistry, 2018, 9, 4716-4723.	3.9	27
9	Preparation of hyperbranched polymers by oxa-Michael addition polymerization. Polymer Chemistry, 2020, 11, 1298-1306.	3.9	27
10	Synthesis of Poly(<i>ïµ</i> â€caprolactoneâ€ <i>co</i> â€methacrylic acid) Copolymer via Phosphazeneâ€Catalyz Hybrid Copolymerization. Macromolecular Chemistry and Physics, 2013, 214, 378-385.	ed	26
11	A simple route to vinyl-functionalized hyperbranched polymers: Self-condensing anionic copolymerization of allyl methacrylate and hydroxyethyl methacrylate. Polymer, 2015, 72, 63-68.	3.8	25
12	Dual thermo- and light-responsive nanorods from self-assembly of the 4-propoxyazobenzene-terminated poly(N-isopropylacrylamide) in aqueous solution. Polymer, 2015, 73, 195-204.	3.8	22
13	Radical emulsion polymerization with chain transfer monomer: an approach to branched vinyl polymers with high molecular weight and relatively narrow polydispersity. Polymer Chemistry, 2014, 5, 1863.	3.9	21
14	How Does the Branching Effect of Macromonomer Influence the Polymerization, Structural Features, and Solution Properties of Long-Subchain Hyperbranched Polymers?. Macromolecules, 2019, 52, 1065-1082.	4.8	21
15	Highly Efficient Amide Michael Addition and Its Use in the Preparation of Tunable Multicolor Photoluminescent Polymers. ACS Applied Materials & Interfaces, 2020, 12, 50870-50878.	8.0	21
16	Facile synthesis of highly branched poly(acrylonitrile-co-vinyl acetate)s with low viscosity and high thermal stability via radical aqueous solution polymerization. Polymer Chemistry, 2014, 5, 3326-3334.	3.9	20
17	Synthesis of highly branched polymers by reversible complexation-mediated copolymerization of vinyl and divinyl monomers. Polymer Chemistry, 2017, 8, 2137-2144.	3.9	20
18	Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation. Polymer Composites, 2012, 33, 1770-1776.	4.6	19

Hongjun Yang

#	Article	IF	CITATIONS
19	Self-condensing reversible complexation-mediated copolymerization for highly branched polymers with <i>in situ</i> formed inimers. Polymer Chemistry, 2017, 8, 6844-6852.	3.9	18
20	A versatile strategy for synthesis of hyperbranched polymers with commercially available methacrylate inimer. RSC Advances, 2015, 5, 60401-60408.	3.6	17
21	Radical polymerization in the presence of a peroxide monomer: an approach to branched vinyl polymers. Polymer Chemistry, 2017, 8, 4428-4439.	3.9	17
22	Quadrangular Prism: A Unique Selfâ€Assembly from Amphiphilic Hyperbranched PMAâ€ <i>b</i> â€₽AA. Macromolecular Rapid Communications, 2014, 35, 330-336.	3.9	15
23	Synthesis of Hyperbranched Poly(ε-caprolactone) Containing Terminal Azobenzene Structure via Combined Ring-Opening Polymerization and "Click―Chemistry. Polymers, 2015, 7, 1248-1268.	4.5	14
24	Preparation and Properties of Branched Polystyrene through Radical Suspension Polymerization. Polymers, 2017, 9, 14.	4.5	13
25	pH and thermo responsive aliphatic tertiary amine chromophore hyperbranched poly(amino ether) Tj ETQq1	1 0.78 <u>43</u> 14 rg	gBT_/Overloc
26	Hybrid copolymerization of cyclic and vinyl monomers. Science China Chemistry, 2013, 56, 1101-1104.	8.2	12
27	Remarkable untangled dynamics behavior of multicyclic branched polystyrenes. Chemical Communications, 2021, 57, 399-402.	4.1	12
28	Synthesis and enzymatic degradation of poly(ε-caprolactone-co-ethylene carbonate-co-ethylene oxide) copolymer. Polymer Bulletin, 2013, 70, 467-478.	3.3	11
29	Facile synthesis of biodegradable and clickable polymer. RSC Advances, 2014, 4, 23377-23381.	3.6	11
30	A facile approach for preparing tadpole and barbell-shaped cyclic polymers through combining ATRP and atom transfer radical coupling (ATRC) reactions. Polymer Chemistry, 2020, 11, 6529-6538.	3.9	10
31	Synthesis of thermoresponsive nonconjugated fluorescent branched poly(ether amide)s <i>via</i> oxa-Michael addition polymerization. Polymer Chemistry, 2022, 13, 631-639.	3.9	10
32	New Insight into the ATRP of Monovinyl and Divinyl Monomers. Macromolecular Chemistry and Physics, 2015, 216, 1555-1561.	2.2	9
33	Light and Temperature as Dual Stimuli Lead to Self-Assembly of Hyperbranched Azobenzene-Terminated Poly(N-isopropylacrylamide). Polymers, 2016, 8, 183.	4.5	9
34	Anionic Hybrid Copolymerization via Concurrent Oxaâ€Michael Addition and Ringâ€Opening Polymerizations. Macromolecular Chemistry and Physics, 2019, 220, 1900147.	2.2	9
35	Molecular Engineering of Injectable, Fast Self-Repairing Hydrogels with Tunable Gelation Time: Characterization by Diffusing Wave Spectroscopy. Macromolecules, 2022, 55, 6474-6486.	4.8	9
36	Preparation and characterization of novel side-chain azobenzene polymers containing tetrazole group. Reactive and Functional Polymers, 2015, 96, 61-70.	4.1	8

Hongjun Yang

#	Article	IF	CITATIONS
37	Synthesis and post-functionalization of a degradable aliphatic polyester containing allyl pendent groups. Polymer, 2017, 121, 256-261.	3.8	8
38	Does bimolecular termination dominate in benzoyl peroxide initiated styrene free-radical polymerization?. Polymer, 2020, 189, 122184.	3.8	8
39	Self-Condensing Iodine Transfer Copolymerization for Highly Branched Polymers Using an <i>in Situ</i> Formed Chain Transfer Monomer. Macromolecules, 2019, 52, 1731-1738.	4.8	7
40	Copolymerize Conventional Vinyl Monomers to Degradable and Waterâ€6oluble Copolymers with a Fluorescence Property. Macromolecular Chemistry and Physics, 2021, 222, .	2.2	7
41	Ultrafast preparation of branched poly(methyl Acrylate) through single electron transfer living radical polymerization at room temperature. Polymer Engineering and Science, 2014, 54, 1579-1584.	3.1	5
42	Few-Layer Clayenes for Material and Environmental Applications. ACS Applied Materials & Interfaces, 2020, 12, 11171-11179.	8.0	5
43	Branched polymers through redox emulsion polymerization using peroxide monomer as the branching agent. Journal of Polymer Science, 2021, 59, 404-411.	3.8	4
44	Preparation of branched polystyrene by free radical emulsion polymerization in the presence of functional monomer. Materials Research Innovations, 0, , 1-6.	2.3	2
45	Radical polymerization in the presence of peroxide and reducing agent monomer for branched polymers. Journal of Polymer Science Part A, 2019, 57, 833-840.	2.3	2
46	Precisely Tailoring and Renewing Polymers: An Efficient Strategy for Polymer Recycling. Macromolecular Chemistry and Physics, 0, , 2200117.	2.2	2
47	Initiation and Termination in Styrene Freeâ€Radical Polymerization Initiated by Redox Initiation. Macromolecular Chemistry and Physics, 2020, 221, 2000277.	2.2	1
48	Investigation of the microrheological properties of the branched polystyrene using 2-(2-bromoisobutyryloxy) ethyl methacrylate as the inimer. Materials Research Innovations, 2022, 26, 197-202.	2.3	1
49	Noncovalent Postmodification Guided Reversible Compartmentalization of Polymeric Micelles. ACS Macro Letters, 2022, 11, 687-692.	4.8	1
50	Preparation of branched polystyrene via atom transfer radical polymerisation using diene with electron-rich double bond. Materials Research Innovations, 2020, 24, 447-451.	2.3	0
51	Rapid synthesis of α-Sn(HPO4)2·H2O by microwave-hydrothermal process. Ceramics International, 2021, 47, 16303-16308.	4.8	0
52	Solvent Effect on Photo / Thermo Responsive behaviour and Application of Poly(N-isopropylacrylamide) End-capped with 4-Propoxyazobenzene in Aqueous Media. Materials Research Innovations, 2022, 26, 44-51.	2.3	0