Juan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3019913/publications.pdf Version: 2024-02-01

LUAN LU

#	Article	IF	CITATIONS
1	LncEDCH1Âimproves mitochondrial function to reduce muscle atrophy by interacting with SERCA2. Molecular Therapy - Nucleic Acids, 2022, 27, 319-334.	5.1	9
2	Evidence for Neuropeptide W Acting as a Physiological Corticotropin-releasing Inhibitory Factor in Male Chickens. Endocrinology, 2022, 163, .	2.8	9
3	Transcriptomic analysis of granulosa cell populations proximal and distal to the germinal disc of chicken preovulatory follicles. Scientific Reports, 2021, 11, 4683.	3.3	10
4	Characterization of Four Orphan Receptors (GPR3, GPR6, GPR12 and GPR12L) in Chickens and Ducks and Regulation of GPR12 Expression in Ovarian Granulosa Cells by Progesterone. Genes, 2021, 12, 489.	2.4	6
5	Comparative analysis of complete plastid genomes from <i>Lilium lankongense</i> Franchet and its closely related species and screening of <i>Lilium</i> -specific primers. PeerJ, 2021, 9, e10964.	2.0	1
6	Characterization of four urotensin II receptors (UTS2Rs) in chickens. Peptides, 2021, 138, 170482.	2.4	6
7	Molecular Cloning and Functional Characterization of Three 5-HT Receptor Genes (HTR1B, HTR1E, and) Tj ETQq1	1 0.78431 2.4	4 rgBT /Ove
8	Phylogeny and Comparative Analysis for the Plastid Genomes of Five Tulipa (Liliaceae). BioMed Research International, 2021, 2021, 1-10.	1.9	7
9	Neuropeptide S (NPS) and its receptor (NPSR1) in chickens: cloning, tissue expression, and functional analysis. Poultry Science, 2021, 100, 101445.	3.4	6
10	Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes. Frontiers in Plant Science, 2021, 12, 699226.	3.6	10
11	Melanocortin Receptor 4 (MC4R) Signaling System in Nile Tilapia. International Journal of Molecular Sciences, 2020, 21, 7036.	4.1	8
12	Characterization of a novel thyrotropin-releasing hormone receptor, TRHR3, in chickens. Poultry Science, 2020, 99, 1643-1654.	3.4	6
13	Phylogeny and highland adaptation of Chinese species in Allium section Daghestanica (Amaryllidaceae) revealed by transcriptome sequencing. Molecular Phylogenetics and Evolution, 2020, 146, 106737.	2.7	10
14	Opioid Peptides and Their Receptors in Chickens: Structure, Functionality, and Tissue Distribution. Peptides, 2020, 128, 170307.	2.4	7
15	Notholirion campanulatum is co-specific with N. bulbuliferum (Liliaceae) based on morphology and molecular data . Phytotaxa, 2020, 471, 234-246.	0.3	2
16	Endothelins (EDN1, EDN2, EDN3) and their receptors (EDNRA, EDNRB, EDNRB2) in chickens: Functional analysis and tissue distribution. General and Comparative Endocrinology, 2019, 283, 113231.	1.8	18
17	The complete chloroplast genome of Lilium Lankongense Franchet (Liliaceae). Mitochondrial DNA Part B: Resources, 2019, 4, 1824-1825.	0.4	2
18	Identification of a Novel Functional Corticotropin-Releasing Hormone (CRH2) in Chickens and Its Roles in Stimulating Pituitary TSHÎ ² Expression and ACTH Secretion. Frontiers in Endocrinology, 2019, 10, 595.	3.5	15

Juan Li

#	Article	IF	CITATIONS
19	Arginine vasotocin (AVT)/mesotocin (MT) receptors in chickens: Evidence for the possible involvement of AVT-AVPR1 signaling in the regulation of oviposition and pituitary prolactin expression. General and Comparative Endocrinology, 2019, 281, 91-104.	1.8	19
20	Transcriptomic Diversification of Granulosa Cells during Follicular Development in Chicken. Scientific Reports, 2019, 9, 5462.	3.3	34
21	Dopamine D2-like receptors (DRD2 and DRD4) in chickens: Tissue distribution, functional analysis, and their involvement in dopamine inhibition of pituitary prolactin expression. Gene, 2018, 651, 33-43.	2.2	12
22	Characterization of neuromedin U (NMU), neuromedin S (NMS) and their receptors (NMUR1, NMUR2) in chickens. Peptides, 2018, 101, 69-81.	2.4	17
23	The complete chloroplast genome of Notholition macrophyllum. Mitochondrial DNA Part B: Resources, 2018, 3, 1102-1103.	0.4	1
24	The Chloroplast Genome of Lilium henrici: Genome Structure and Comparative Analysis. Molecules, 2018, 23, 1276.	3.8	41
25	Molecular phylogenetics and historical biogeography of the tribe Lilieae (Liliaceae): bi-directional dispersal between biodiversity hotspots in Eurasia. Annals of Botany, 2018, 122, 1245-1262.	2.9	23
26	Comparative Analysis of the Chloroplast Genomes of the Chinese Endemic Genus Urophysa and Their Contribution to Chloroplast Phylogeny and Adaptive Evolution. International Journal of Molecular Sciences, 2018, 19, 1847.	4.1	92
27	The orphan G protein-coupled receptor 25 (GPR25) is activated by Apelin and Apela in non-mammalian vertebrates. Biochemical and Biophysical Research Communications, 2018, 501, 408-414.	2.1	11
28	The complete chloroplast genome of Nomocharis pardanthina. Mitochondrial DNA Part B: Resources, 2018, 3, 103-104.	0.4	5
29	Characterization of NMB, GRP and their receptors (BRS3, NMBR and GRPR) in chickens. Journal of Molecular Endocrinology, 2017, 59, 61-79.	2.5	28
30	The interaction of MC3R and MC4R with MRAP2, ACTH, α-MSH and AgRP in chickens. Journal of Endocrinology, 2017, 234, 155-174.	2.6	54
31	Rhodium(III)-Catalyzed Annulation of Pyridinones with Alkynes via Double C–H Activation: A Route to Functionalized Quinolizinones. Organic Letters, 2017, 19, 3083-3086.	4.6	65
32	Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression. Gene, 2017, 615, 57-67.	2.2	11
33	Molecular characterization of neuropeptide Y (NPY) receptors (Y1, Y4 and Y6) and investigation of the tissue expression of their ligands (NPY, PYY and PP) in chickens. General and Comparative Endocrinology, 2017, 240, 46-60.	1.8	23
34	Characterization of Neuropeptide B (NPB), Neuropeptide W (NPW), and Their Receptors in Chickens: Evidence for NPW Being a Novel Inhibitor of Pituitary GH and Prolactin Secretion. Endocrinology, 2016, 157, 3562-3576.	2.8	50
35	Molecular characterization of three NPY receptors (Y2, Y5 and Y7) in chickens: Gene structure, tissue expression, promoter identification, and functional analysis. General and Comparative Endocrinology, 2016, 236, 24-34.	1.8	26
36	p63α modulates c-Myc activity via direct interaction and regulation of MM1 protein stability. Oncotarget, 2016, 7, 44277-44287.	1.8	16

Juan Li

#	Article	IF	CITATIONS
37	Characterization of fibronectin type III domain-containing protein 5 (FNDC5) gene in chickens: Cloning, tissue expression, and regulation of its expression in the muscle by fasting and cold exposure. Gene, 2015, 570, 221-229.	2.2	20
38	Extra-pituitary prolactin (PRL) and prolactin-like protein (PRL-L) in chickens and zebrafish. General and Comparative Endocrinology, 2015, 220, 143-153.	1.8	20
39	Corticotropin-releasing hormone (CRH) stimulates cocaine- and amphetamine-regulated transcript gene (CART1) expression through CRH type 1 receptor (CRHR1) in chicken anterior pituitary. Molecular and Cellular Endocrinology, 2015, 417, 166-177.	3.2	22
40	Characterization of the Two CART Genes (CART1 and CART2) in Chickens (Gallus gallus). PLoS ONE, 2015, 10, e0127107.	2.5	31
41	Identification of the receptors for somatostatin (SST) and cortistatin (CST) in chickens and investigation of the roles of cSST28, cSST14, and cCST14 in inhibiting cGHRH1–27NH2-induced growth hormone secretion in cultured chicken pituitary cells. Molecular and Cellular Endocrinology, 2014, 384, 83-95.	3.2	33
42	Identification and characterization of the pig ABIN-1 gene and investigation of its association with reproduction traits. Journal of Genetics, 2013, 92, 10-20.	0.7	9