Martin Thanbichler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3019279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Learning the distribution of single-cell chromosome conformations in bacteria reveals emergent order across genomic scales. Nature Communications, 2021, 12, 1963.	12.8	14
2	The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Molecular Cell, 2021, 81, 3992-4007.e10.	9.7	37
3	Bacterial cell growth is arrested by violet and blue, but not yellow light excitation during fluorescence microscopy. BMC Molecular and Cell Biology, 2020, 21, 35.	2.0	32
4	Molecular architecture of the DNA-binding sites of the P-loop ATPases MipZ and ParA from Caulobacter crescentus. Nucleic Acids Research, 2020, 48, 4769-4779.	14.5	23
5	Bio-Layer Interferometry Analysis of the Target Binding Activity of CRISPR-Cas Effector Complexes. Frontiers in Molecular Biosciences, 2020, 7, 98.	3.5	39
6	BacStalk: A comprehensive and interactive image analysis software tool for bacterial cell biology. Molecular Microbiology, 2020, 114, 140-150.	2.5	53
7	Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. PLoS Genetics, 2020, 16, e1008724.	3.5	8
8	Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biological Chemistry, 2020, 401, 1349-1363.	2.5	13
9	Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. , 2020, 16, e1008724.		0
10	Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. , 2020, 16, e1008724.		0
11	Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. , 2020, 16, e1008724.		0
12	Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. , 2020, 16, e1008724.		0
13	Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. , 2020, 16, e1008724.		0
14	Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. , 2020, 16, e1008724.		0
15	A gradientâ€forming MipZ protein mediating the control of cell division in the magnetotactic bacterium <i>MagnetospirillumÂgryphiswaldense</i> . Molecular Microbiology, 2019, 112, 1423-1439.	2.5	12
16	Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nature Communications, 2019, 10, 3290.	12.8	29
17	Dynamic Metabolic Rewiring Enables Efficient Acetyl Coenzyme A Assimilation in Paracoccus denitrificans. MBio, 2019, 10, .	4.1	11
18	ParB-type DNA Segregation Proteins Are CTP-Dependent Molecular Switches. Cell, 2019, 179, 1512-1524 e15	28.9	136

#	Article	IF	CITATIONS
19	A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. PLoS Genetics, 2019, 15, e1007897.	3.5	31
20	Cell Division: Symbiotic Bacteria Turn It Upside Down. Current Biology, 2018, 28, R306-R308.	3.9	3
21	A Family of Single Copy <i>repABC</i> -Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium <i>Sinorhizobium meliloti</i> . ACS Synthetic Biology, 2017, 6, 968-984.	3.8	29
22	Dynamics of the peptidoglycan biosynthetic machinery in the stalked budding bacterium <i>Hyphomonas neptunium</i> . Molecular Microbiology, 2017, 103, 875-895.	2.5	35
23	LytM factors affect the recruitment of autolysins to the cell division site in <i>Caulobacter crescentus</i> . Molecular Microbiology, 2017, 106, 419-438.	2.5	26
24	Bactofilin-mediated organization of the ParABS chromosome segregation system in Myxococcus xanthus. Nature Communications, 2017, 8, 1817.	12.8	58
25	Mutations targeting the plugâ€domain of the <scp><i>S</i></scp> <i>hewanella oneidensis</i> protonâ€driven stator allow swimming at increased viscosity and under anaerobic conditions. Molecular Microbiology, 2016, 102, 925-938.	2.5	10
26	Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Science Advances, 2015, 1, e1501087.	10.3	64
27	β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Proceedings of the United States of America, 2015, 112, E127-36.	7.1	54
28	Molecular Toolbox for Genetic Manipulation of the Stalked Budding Bacterium Hyphomonas neptunium. Applied and Environmental Microbiology, 2015, 81, 736-744.	3.1	24
29	A Fluorescent Bioreporter for Acetophenone and 1-Phenylethanol derived from a Specifically Induced Catabolic Operon. Frontiers in Microbiology, 2015, 6, 1561.	3.5	17
30	Effect of the Min System on Timing of Cell Division in Escherichia coli. PLoS ONE, 2014, 9, e103863.	2.5	10
31	Function and Localization Dynamics of Bifunctional Penicillin-Binding Proteins in Caulobacter crescentus. Journal of Bacteriology, 2014, 196, 1627-1639.	2.2	24
32	Spatiotemporal organization of microbial cells by protein concentration gradients. Trends in Microbiology, 2014, 22, 65-73.	7.7	56
33	Plasmid segregation by a moving ATPase gradient. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4741-4742.	7.1	10
34	Two Small GTPases Act in Concert with the Bactofilin Cytoskeleton to Regulate Dynamic Bacterial Cell Polarity. Developmental Cell, 2013, 25, 119-131.	7.0	55
35	Divin: A Small Molecule Inhibitor of Bacterial Divisome Assembly. Journal of the American Chemical Society, 2013, 135, 9768-9776.	13.7	17
36	Nucleotideâ€independent cytoskeletal scaffolds in bacteria. Cytoskeleton, 2013, 70, 409-423.	2.0	50

MARTIN THANBICHLER

#	Article	IF	CITATIONS
37	Physiological role of stalk lengthening in <i>Caulobacter crescentus</i> . Communicative and Integrative Biology, 2013, 6, e24561.	1.4	38
38	General Protein Diffusion Barriers Create Compartments within Bacterial Cells. Cell, 2012, 151, 1270-1282.	28.9	68
39	Localized Dimerization and Nucleoid Binding Drive Gradient Formation by the Bacterial Cell Division Inhibitor MipZ. Molecular Cell, 2012, 46, 245-259.	9.7	105
40	Characterization of Caulobacter crescentus FtsZ Protein Using Dynamic Light Scattering. Journal of Biological Chemistry, 2012, 287, 23878-23886.	3.4	26
41	DCAP: A Broad-Spectrum Antibiotic That Targets the Cytoplasmic Membrane of Bacteria. Journal of the American Chemical Society, 2012, 134, 11322-11325.	13.7	53
42	Good things come in small packages: Subcellular organization and development in bacteria. Current Opinion in Microbiology, 2011, 14, 687-690.	5.1	3
43	Activated chemoreceptor arrays remain intact and hexagonally packed. Molecular Microbiology, 2011, 82, 748-757.	2.5	38
44	DipM, a new factor required for peptidoglycan remodelling during cell division in <i>Caulobacter crescentus</i> . Molecular Microbiology, 2010, 77, 90-107.	2.5	76
45	Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO Journal, 2010, 29, 327-339.	7.8	143
46	Synchronization of Chromosome Dynamics and Cell Division in Bacteria. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000331-a000331.	5.5	49
47	FtsNâ€like proteins are conserved components of the cell division machinery in proteobacteria. Molecular Microbiology, 2009, 72, 1037-1053.	2.5	74
48	Closing The Ring: A New Twist to Bacterial Chromosome Condensation. Cell, 2009, 137, 598-600.	28.9	5
49	Spatial regulation in Caulobacter crescentus. Current Opinion in Microbiology, 2009, 12, 715-721.	5.1	29
50	Getting organized — how bacterial cells move proteins and DNA. Nature Reviews Microbiology, 2008, 6, 28-40.	28.6	112
51	The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of <i>Caulobacter crescentus</i> . Genes and Development, 2008, 22, 212-225.	5.9	127
52	A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Research, 2007, 35, e137-e137.	14.5	305
53	MipZ, a Spatial Regulator Coordinating Chromosome Segregation with Cell Division in Caulobacter. Cell, 2006, 126, 147-162.	28.9	445
54	Chromosome organization and segregation in bacteria. Journal of Structural Biology, 2006, 156, 292-303.	2.8	83

MARTIN THANBICHLER

#	Article	IF	CITATIONS
55	Selenocysteine tRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors. EMBO Journal, 2005, 24, 11-22.	7.8	102
56	The bacterial nucleoid: A highly organized and dynamic structure. Journal of Cellular Biochemistry, 2005, 96, 506-521.	2.6	110
57	The structure and function of the bacterial chromosome. Current Opinion in Genetics and Development, 2005, 15, 153-162.	3.3	51
58	The choreographed dynamics of bacterial chromosomes. Trends in Microbiology, 2005, 13, 221-228.	7.7	42
59	Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9257-9262.	7.1	388
60	Purification and characterization of hexahistidine-tagged elongation factor SelB. Protein Expression and Purification, 2003, 31, 265-270.	1.3	6
61	Selenoprotein Biosynthesis: Purification and Assay of Components Involved in Selenocysteine Biosynthesis and Insertion in Escherichia coli. Methods in Enzymology, 2002, 347, 3-16.	1.0	29
62	The function of SECIS RNA in translational control of gene expression in Escherichia coli. EMBO Journal, 2002, 21, 6925-6934.	7.8	45
63	Functional Analysis of Prokaryotic SELB proteins. BioFactors, 2001, 14, 53-59.	5.4	27
64	Kinetics of the Interaction of Translation Factor SelB fromEscherichia coli with Guanosine Nucleotides and Selenocysteine Insertion Sequence RNA. Journal of Biological Chemistry, 2000, 275, 20458-20466.	3.4	53
65	A Family of S-Methylmethionine-dependent Thiol/Selenol Methyltransferases. Journal of Biological Chemistry, 1999, 274, 5407-5414.	3.4	172
66	<i>S</i> -Methylmethionine Metabolism in <i>Escherichia coli</i> . Journal of Bacteriology, 1999, 181, 662-665.	2.2	67
67	Strep-Tag II Affinity Purification: An Approach to Study Intermediates of Metalloenzyme Biosynthesis. Analytical Biochemistry, 1998, 259, 68-73.	2.4	36