Marie-ThérÃ"se Charreyre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3019252/publications.pdf

Version: 2024-02-01

28 papers

1,534 citations

471509 17 h-index 28 g-index

28 all docs 28 docs citations

times ranked

28

1524 citing authors

#	Article	IF	CITATIONS
1	Fluorescent Polymer-AS1411-Aptamer Probe for dSTORM Super-Resolution Imaging of Endogenous Nucleolin. Biomacromolecules, 2022, 23, 2302-2314.	5.4	5
2	Taking Advantage of Oxidation to Characterize Thiol-Containing Polymer Chains by MALDI-TOF Mass Spectrometry. Analytical Chemistry, 2020, 92, 3804-3809.	6.5	6
3	Advanced Fluorescent Polymer Probes for the Site-Specific Labeling of Proteins in Live Cells Using the HaloTag Technology. ACS Omega, 2019, 4, 12841-12847.	3. 5	12
4	Temperature-responsive copolymers without compositional drift by RAFT copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride and 2-(diethylamino)ethyl acrylate. Polymer Chemistry, 2019, 10, 2106-2116.	3.9	7
5	Innovative particle standards and long-lived imaging for 2D and 3D dSTORM. Scientific Reports, 2019, 9, 17967.	3.3	9
6	Labeling of native proteins with fluorescent RAFT polymer probes: application to the detection of a cell surface protein using flow cytometry. Polymer Chemistry, 2018, 9, 1857-1868.	3.9	15
7	Fluorescent RAFT polymers bearing a nitrilotriacetic acid (NTA) ligand at the α-chain-end for the site-specific labeling of histidine-tagged proteins. Polymer Chemistry, 2017, 8, 1611-1615.	3.9	16
8	Two-Photon Photosensitizer–Polymer Conjugates for Combined Cancer Cell Death Induction and Two-Photon Fluorescence Imaging: Structure/Photodynamic Therapy Efficiency Relationship. Biomacromolecules, 2017, 18, 4022-4033.	5 . 4	15
9	¹ H DOSY NMR Determination of the Molecular Weight and the Solution Properties of Poly(<i>N</i> êecryloylmorpholine) in Various Solvents. Macromolecular Chemistry and Physics, 2016, 217, 2286-2293.	2.2	22
10	Virus Optical Imaging: Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses (Adv. Healthcare Mater. 16/2016). Advanced Healthcare Materials, 2016, 5, 2031-2031.	7 . 6	1
11	Fluorescent gold nanoparticles with chain-end grafted RAFT copolymers: influence of the polymer molecular weight and type of chromophore. Polymer Chemistry, 2016, 7, 6812-6825.	3.9	8
12	Farâ€Red Fluorescent Lipidâ€Polymer Probes for an Efficient Labeling of Enveloped Viruses. Advanced Healthcare Materials, 2016, 5, 2032-2044.	7.6	7
13	Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging. Biomaterials, 2015, 46, 70-81.	11.4	25
14	Synthesis of multifunctional lipid–polymer conjugates: application to the elaboration of bright far-red fluorescent lipid probes. RSC Advances, 2014, 4, 15569-15578.	3.6	20
15	Biocompatible well-defined chromophore–polymer conjugates for photodynamic therapy and two-photon imaging. Polymer Chemistry, 2013, 4, 61-67.	3.9	38
16	Biotin-end-functionalized highly fluorescent water-soluble polymers. Polymer Chemistry, 2013, 4, 2968.	3.9	38
17	Water-soluble chromophores with star-shaped oligomeric arms: synthesis, spectroscopic studies and first results in bio-imaging and cell death induction. New Journal of Chemistry, 2012, 36, 2328.	2.8	22
18	Dye-labelled polymer chains at specific sites: Synthesis by living/controlled polymerization. Progress in Polymer Science, 2011, 36, 568-602.	24.7	113

#	Article	IF	CITATIONS
19	Synthesis of Lipid-α-End-Functionalized Chains by RAFT Polymerization. Stabilization of Lipid/Polymer Particle Assemblies. Macromolecules, 2008, 41, 8346-8353.	4.8	36
20	Versatile Precursors of Functional RAFT Agents. Application to the Synthesis of Bio-Related End-Functionalized Polymers. Journal of the American Chemical Society, 2006, 128, 2546-2547.	13.7	160
21	Experimental Requirements for an Efficient Control of Free-Radical Polymerizations via the Reversible Addition-Fragmentation Chain Transfer (RAFT) Process. Macromolecular Rapid Communications, 2006, 27, 653-692.	3.9	425
22	A detailed kinetic study of the RAFT polymerization of a bi-substituted acrylamide derivative: influence of experimental parameters. Polymer, 2004, 45, 8661-8674.	3.8	67
23	Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights. Polymer, 2004, 45, 7821-7830.	3.8	106
24	Well-defined polymer precursors synthesized by RAFT polymerization of N,N-dimethylacrylamide/N-acryloxysuccinimide: random and block copolymers. Polymer, 2004, 45, 8639-8649.	3.8	77
25	MALDI-TOF MS Investigation of the RAFT Polymerization of a Water-Soluble Acrylamide Derivative. Macromolecules, 2004, 37, 2026-2034.	4.8	104
26	Study of the RAFT Polymerization of a Water-Soluble Bisubstituted Acrylamide Derivative. 1. Influence of the Dithioester Structure. Macromolecules, 2002, 35, 8271-8280.	4.8	110
27	Side-Product ofN-Acryloyloxysuccinimide Synthesis or Useful New Bifunctional Monomer?. Macromolecular Bioscience, 2001, 1, 322-328.	4.1	19
28	Kinetic Study of Free-Radical Solution Copoly- merization of N-Acryloylmorpholine with an Activated Ester-Type Monomer, N-Acryloxysuccinimide. Macromolecular Chemistry and Physics, 2001, 202, 1689-1699.	2,2	51