List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3019232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticles in Photodynamic Therapy. Chemical Reviews, 2015, 115, 1990-2042.	23.0	2,342
2	Independent optical excitation of distinct neural populations. Nature Methods, 2014, 11, 338-346.	9.0	1,879
3	In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 2012, 18, 1580-1585.	15.2	1,299
4	Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 2002, 23, 1553-1561.	5.7	1,185
5	Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008, 60, 1627-1637.	6.6	1,063
6	Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 2008, 29, 937-943.	5.7	942
7	Multicolor Core/Shellâ€Structured Upconversion Fluorescent Nanoparticles. Advanced Materials, 2008, 20, 4765-4769.	11.1	847
8	An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF ₄ :Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology, 2008, 19, 345606.	1.3	674
9	Mesoporous‧ilicaâ€Coated Upâ€Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small, 2009, 5, 2285-2290.	5.2	582
10	Luminescent nanomaterials for biological labelling. Nanotechnology, 2006, 17, R1-R13.	1.3	514
11	Small Upconverting Fluorescent Nanoparticles for Biomedical Applications. Small, 2010, 6, 2781-2795.	5.2	502
12	Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nature Communications, 2018, 9, 576.	5.8	497
13	Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials, 2008, 29, 4122-4128.	5.7	467
14	Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission. Angewandte Chemie - International Edition, 2006, 45, 7732-7735.	7.2	447
15	Synthesis of Hexagonal-Phase Coreâ^'Shell NaYF ₄ Nanocrystals with Tunable Upconversion Fluorescence. Langmuir, 2008, 24, 12123-12125.	1.6	375
16	Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. Journal of Biomedical Materials Research Part B, 2001, 55, 304-312.	3.0	372
17	Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8483-8488.	3.3	346
18	Titania Coated Upconversion Nanoparticles for Near-Infrared Light Triggered Photodynamic Therapy. ACS Nano, 2015, 9, 191-205.	7.3	331

#	Article	IF	CITATIONS
19	Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chemical Society Reviews, 2015, 44, 1449-1478.	18.7	331
20	Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1703482.	10.2	317
21	Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 2007, 28, 1565-1571.	5.7	288
22	Synthesis of polyethylenimine/NaYF4nanoparticles with upconversion fluorescence. Nanotechnology, 2006, 17, 5786-5791.	1.3	280
23	Bead-based microfluidic immunoassays: The next generation. Biosensors and Bioelectronics, 2007, 22, 1197-1204.	5.3	251
24	Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core–shell nanocomposites for cell imaging. Nanoscale, 2012, 4, 5132.	2.8	250
25	Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials, 2009, 30, 5104-5113.	5.7	248
26	Highly Sensitive Multiple microRNA Detection Based on Fluorescence Quenching of Graphene Oxide and Isothermal Strand-Displacement Polymerase Reaction. Analytical Chemistry, 2012, 84, 4587-4593.	3.2	247
27	Recent Progress of Rareâ€Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Advanced Science, 2019, 6, 1901358.	5.6	228
28	Calcium phosphate/chitosan composite scaffolds for controlledin vitro antibiotic drug release. Journal of Biomedical Materials Research Part B, 2002, 62, 378-386.	3.0	218
29	Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 486-495.	1.7	211
30	Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. Journal of Biomedical Materials Research Part B, 2002, 61, 1-8.	3.0	205
31	Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 2014, 47, 3052-3060.	7.6	197
32	Upconversion Nanoprobes: Recent Advances in Sensing Applications. Analytical Chemistry, 2019, 91, 548-568.	3.2	196
33	Versatile design and synthesis of nano-barcodes. Chemical Society Reviews, 2017, 46, 7054-7093.	18.7	193
34	Optical imaging-guided cancer therapy with fluorescent nanoparticles. Journal of the Royal Society Interface, 2010, 7, 3-18.	1.5	189
35	Advancements in microfluidics for nanoparticle separation. Lab on A Chip, 2017, 17, 11-33.	3.1	185
36	Calcium Phosphate—Chitosan Composite Scaffolds for Bone Tissue Engineering. Tissue Engineering, 2003, 9, 337-345.	4.9	180

#	Article	IF	CITATIONS
37	Upconversion Nanoparticle-Based FRET System for Study of siRNA in Live Cells. Langmuir, 2010, 26, 6689-6694.	1.6	175
38	Gold nanoshell coated NaYF4nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging. Journal of Materials Chemistry, 2012, 22, 960-965.	6.7	175
39	Exfoliated Triazineâ€Based Covalent Organic Nanosheets with Multielectron Redox for Highâ€Performance Lithium Organic Batteries. Advanced Energy Materials, 2019, 9, 1801010.	10.2	174
40	Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Advanced Materials, 2019, 31, e1902409.	11.1	173
41	Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials, 2012, 33, 1912-1920.	5.7	167
42	Tuning of the Structure and Emission Spectra of Upconversion Nanocrystals by Alkali Ion Doping. Langmuir, 2011, 27, 13236-13241.	1.6	166
43	Near-IR photoactivation using mesoporous silica–coated NaYF4:Yb,Er/Tm upconversion nanoparticles. Nature Protocols, 2016, 11, 688-713.	5.5	164
44	Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specificÂsurface-coating peptides. Nature Materials, 2012, 11, 817-826.	13.3	158
45	Smartphone based visual and quantitative assays on upconversional paper sensor. Biosensors and Bioelectronics, 2016, 75, 427-432.	5.3	152
46	In vivo wireless photonic photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1469-1474.	3.3	152
47	Preparation of porous materials with ordered hole structure. Advances in Colloid and Interface Science, 2006, 121, 9-23.	7.0	149
48	Natural‣ynthetic Polyblend Nanofibers for Biomedical Applications. Advanced Materials, 2009, 21, 2792-2797.	11.1	145
49	Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosensors and Bioelectronics, 2007, 22, 775-788.	5.3	144
50	Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nature Communications, 2013, 4, 1625.	5.8	144
51	NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology, 2009, 20, 155101.	1.3	143
52	One-pot synthesis of chitosan/LaF3:Eu3+nanocrystals for bio-applications. Nanotechnology, 2006, 17, 1527-1532.	1.3	135
53	Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. Journal of Colloid and Interface Science, 2005, 283, 352-357.	5.0	134
54	Facile synthesis of water-soluble LaF3â^¶ Ln3+ nanocrystals. Journal of Materials Chemistry, 2006, 16, 1031.	6.7	129

#	Article	IF	CITATIONS
55	Micropatterning of Proteins on 3D Porous Polymer Film Fabricated by Using the Breath-Figure Method. Advanced Materials, 2007, 19, 913-916.	11.1	128
56	Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions. Nanoscale, 2012, 4, 6065.	2.8	125
57	A Review on Deterministic Lateral Displacement for Particle Separation and Detection. Nano-Micro Letters, 2019, 11, 77.	14.4	119
58	Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomaterials, 2013, 34, 1722-1731.	5.7	113
59	Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine, 2011, 6, 1273-1288.	1.7	112
60	Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding. Small, 2016, 12, 836-852.	5.2	110
61	Near-Infrared Excited Orthogonal Emissive Upconversion Nanoparticles for Imaging-Guided On-Demand Therapy. ACS Nano, 2019, 13, 10405-10418.	7.3	108
62	Multicolour PEI/NaGdF4:Ce3+,Ln3+nanocrystals by single-wavelength excitation. Nanotechnology, 2007, 18, 025701.	1.3	106
63	DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles. Lab on A Chip, 2014, 14, 4250-4262.	3.1	100
64	Upconversion superballs for programmable photoactivation of therapeutics. Nature Communications, 2019, 10, 4586.	5.8	100
65	Design and Synthesis of Polymer-Functionalized NIR Fluorescent Dyes–Magnetic Nanoparticles for Bioimaging. ACS Nano, 2013, 7, 6796-6805.	7.3	98
66	Nanotechnology: a promising method for oral cancer detection and diagnosis. Journal of Nanobiotechnology, 2018, 16, 52.	4.2	98
67	Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. Journal of Biomedical Materials Research - Part A, 2005, 75A, 56-62.	2.1	97
68	Encapsulation of Quantum Nanodots in Polystyrene and Silica Micro-/Nanoparticles. Langmuir, 2004, 20, 6071-6073.	1.6	94
69	ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance. Chemical Engineering Journal, 2022, 444, 136584.	6.6	94
70	Quasiâ€Continuous Wave Nearâ€Infrared Excitation of Upconversion Nanoparticles for Optogenetic Manipulation of <i>C. elegans</i> . Small, 2016, 12, 1732-1743.	5.2	93
71	<i>In vivo </i> Biocompatibility, Biodistribution and Therapeutic Efficiency of Titania Coated Upconversion Nanoparticles for Photodynamic Therapy of Solid Oral Cancers. Theranostics, 2016, 6, 1844-1865.	4.6	92
72	Self-Assembled Coatings on Individual Monodisperse Magnetite Nanoparticles for Efficient Intracellular Uptake. Biomedical Microdevices, 2004, 6, 33-40.	1.4	89

#	Article	IF	CITATIONS
73	Strong Coupling of MoS ₂ Nanosheets and Nitrogenâ€Doped Graphene for Highâ€Performance Pseudocapacitance Lithium Storage. Small, 2018, 14, e1704410.	5.2	89
74	Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells. Scientific Reports, 2016, 6, 22934.	1.6	87
75	Hybrid Lanthanide Nanoparticles with Paramagnetic Shell Coated on Upconversion Fluorescent Nanocrystals. Langmuir, 2009, 25, 12015-12018.	1.6	86
76	Small Upconverting Fluorescent Nanoparticles for Biosensing and Bioimaging. Advanced Optical Materials, 2016, 4, 984-997.	3.6	86
77	Depositing CdS nanoclusters on carbon-modified NaYF ₄ :Yb,Tm upconversion nanocrystals for NIR-light enhanced photocatalysis. Nanoscale, 2016, 8, 553-562.	2.8	86
78	Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nature Communications, 2019, 10, 4416.	5.8	85
79	Multifunctional Quantum-Dot-Based Magnetic Chitosan Nanobeads. Advanced Materials, 2005, 17, 2375-2380.	11.1	84
80	Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. ACS Nano, 2021, 15, 3709-3735.	7.3	82
81	Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications. Journal of Colloid and Interface Science, 2007, 310, 464-470.	5.0	81
82	Cell growth and function on calcium phosphate reinforced chitosan scaffolds. Journal of Materials Science: Materials in Medicine, 2004, 15, 255-260.	1.7	80
83	Near-Infrared-Light-Based Nano-Platform Boosts Endosomal Escape and Controls Gene Knockdown <i>in Vivo</i> . ACS Nano, 2014, 8, 4848-4858.	7.3	80
84	Transplantation of Nanoparticle Transfected Skeletal Myoblasts Overexpressing Vascular Endothelial Growth Factor-165 for Cardiac Repair. Circulation, 2007, 116, 1113-20.	1.6	79
85	Photoactivation of core–shell titania coated upconversion nanoparticles and their effect on cell death. Journal of Materials Chemistry B, 2014, 2, 7017-7026.	2.9	79
86	Luminescence behavior of Eu3+ doped LaF3 nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2455-2459.	2.0	75
87	Non-viral nanocarriers for siRNA delivery in breast cancer. Journal of Controlled Release, 2014, 190, 440-450.	4.8	75
88	Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab on A Chip, 2016, 16, 75-85.	3.1	75
89	Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities. Biosensors and Bioelectronics, 2017, 87, 339-344.	5.3	75
90	An Excitation Navigating Energy Migration of Lanthanide Ions in Upconversion Nanoparticles. Advanced Materials, 2020, 32, e1906225.	11.1	75

#	Article	IF	CITATIONS
91	Synthesis and characterization of monodisperse chitosan nanoparticles with embedded quantum dots. Nanotechnology, 2006, 17, 140-144.	1.3	69
92	Phase angle encoded upconversion luminescent nanocrystals for multiplexing applications. Nanoscale, 2017, 9, 1676-1686.	2.8	66
93	Core – shell upconversion nanoparticle – semiconductor heterostructures for photodynamic therapy. Scientific Reports, 2015, 5, 8252.	1.6	65
94	Crystallization and microstructure analysis of calcium phosphate-based glass ceramics for biomedical applications. Journal of Non-Crystalline Solids, 2000, 272, 14-21.	1.5	64
95	Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence. Biosensors and Bioelectronics, 2013, 43, 252-256.	5.3	64
96	Bacterial imaging with photostable upconversion fluorescent nanoparticles. Biomaterials, 2014, 35, 2987-2998.	5.7	64
97	LRET-Based Biodetection of DNA Release in Live Cells Using Surface-Modified Upconverting Fluorescent Nanoparticles. Langmuir, 2011, 27, 2854-2860.	1.6	61
98	Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates. Journal of Non-Crystalline Solids, 2001, 282, 159-164.	1.5	60
99	Life Cycle-Dependent Cytoskeletal Modifications in Plasmodium falciparum Infected Erythrocytes. PLoS ONE, 2013, 8, e61170.	1.1	59
100	A facile synthesis of strong near infrared fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical imaging and therapy. Nanoscale, 2013, 5, 4314.	2.8	57
101	NIR-excitable heterostructured upconversion perovskite nanodots with improved stability. Nature Communications, 2021, 12, 219.	5.8	57
102	Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis. Coordination Chemistry Reviews, 2021, 438, 213870.	9.5	56
103	Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nature Communications, 2020, 11, 299.	5.8	55
104	Towards translational optogenetics. Nature Biomedical Engineering, 2023, 7, 349-369.	11.6	54
105	Magnetic Resonance Imaging (MRI) Contrast Agents for Tumor Diagnosis. Journal of Healthcare Engineering, 2013, 4, 23-46.	1.1	51
106	Porous Polymer Films with Size-Tunable Surface Pores. Chemistry of Materials, 2007, 19, 2581-2584.	3.2	49
107	Microbead Patterning on Porous Films with Ordered Arrays of Pores. Advanced Materials, 2006, 18, 3094-3098.	11.1	47
108	Targeting CCL21–folic acid–upconversion nanoparticles conjugates to folate receptor-α expressing tumor cells in an endothelial-tumor cell bilayer model. Biomaterials, 2013, 34, 4860-4871.	5.7	47

#	Article	IF	CITATIONS
109	A two-photon fluorescent turn-on probe for imaging of SO2 derivatives in living cells and tissues. Analytica Chimica Acta, 2016, 937, 136-142.	2.6	47
110	Fluorescent microbeads for point-of-care testing: a review. Mikrochimica Acta, 2019, 186, 361.	2.5	46
111	Assembly of polystyrene microspheres and its application in cell micropatterning. Biomaterials, 2007, 28, 2328-2338.	5.7	45
112	Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection. Nano-Micro Letters, 2018, 10, 31.	14.4	44
113	G-Quadruplex/Porphyrin Composite Photosensitizer: A Facile Way to Promote Absorption Redshift and Photodynamic Therapy Efficacy. ACS Applied Materials & Interfaces, 2019, 11, 13158-13167.	4.0	44
114	A Flexiâ€PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy. Advanced Materials, 2020, 32, 2001459.	11.1	44
115	Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coordination Chemistry Reviews, 2022, 461, 214495.	9.5	44
116	Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging. Nanotechnology, 2011, 22, 395101.	1.3	43
117	Silk Fibroin-Based Complex Particles with Bioactive Encrustation for Bone Morphogenetic Protein 2 Delivery. Biomacromolecules, 2013, 14, 4465-4474.	2.6	43
118	Photon Upconversion Kinetic Nanosystems and Their Optical Response. Laser and Photonics Reviews, 2018, 12, 1700144.	4.4	42
119	Fluorescent label-free quantitative detection of nano-sized bioparticles using a pillar array. Nature Communications, 2018, 9, 1254.	5.8	41
120	A protected excitation-energy reservoir for efficient upconversion luminescence. Nanoscale, 2018, 10, 250-259.	2.8	41
121	Modularly Assembled Upconversion Nanoparticles for Orthogonally Controlled Cell Imaging and Drug Delivery. ACS Applied Materials & amp; Interfaces, 2020, 12, 12549-12556.	4.0	40
122	Zinc-Dithizone Complex Engineered Upconverting Nanosensors for the Detection of Hypochlorite in Living Cells. Small, 2015, 11, 4568-4575.	5.2	39
123	Multicolor polystyrene nanospheres tagged with up-conversion fluorescent nanocrystals. Nanotechnology, 2008, 19, 255601.	1.3	38
124	In vitro and in vivo evaluation of folate receptor-targeting amphiphilic copolymer-modified liposomes loaded with docetaxel. International Journal of Nanomedicine, 2011, 6, 1167.	3.3	38
125	Real-Time Visualization of Cysteine Metabolism in Living Cells with Ratiometric Fluorescence Probes. Analytical Chemistry, 2018, 90, 2686-2691.	3.2	38
126	Heavy-atom-free charge transfer photosensitizers: Tuning the efficiency of BODIPY in singlet oxygen generation via intramolecular electron donor-acceptor interaction. Dyes and Pigments, 2019, 164, 139-147.	2.0	38

#	Article	IF	CITATIONS
127	Encapsulation of Photosensitizers and Upconversion Nanocrystals in Lipid Micelles for Photodynamic Therapy. Particle and Particle Systems Characterization, 2014, 31, 228-235.	1.2	37
128	Upconversion: road to El Dorado of the fluorescence world. Luminescence, 2010, 25, 290-293.	1.5	36
129	Plasmonic nanohole arrays for monitoring growth of bacteria and antibiotic susceptibility test. Sensors and Actuators B: Chemical, 2013, 182, 576-583.	4.0	36
130	Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications. Materials Chemistry Frontiers, 2021, 5, 1743-1770.	3.2	36
131	Protein Micropatterning via Self-Assembly of Nanoparticles. Advanced Materials, 2005, 17, 150-153.	11.1	35
132	Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites. Biomicrofluidics, 2015, 9, 052601.	1.2	35
133	Upconversional Nanoprobes with Highly Efficient Energy Transfer for Ultrasensitive Detection of Alkaline Phosphatase. ACS Sensors, 2019, 4, 2864-2868.	4.0	35
134	Orthogonal Emissive Upconversion Nanoparticles: Material Design and Applications. Small, 2021, 17, e2004552.	5.2	35
135	Purification and N-terminal sequence of a serine proteinase-like protein (BMK-CBP) from the venom of the Chinese scorpion (Buthus martensii Karsch). Toxicon, 2008, 52, 348-353.	0.8	34
136	Luminescent lanthanide nanomaterials: an emerging tool for theranostic applications. Nanomedicine, 2015, 10, 1477-1491.	1.7	33
137	Near-infrared photothermal activation of microgels incorporating polypyrrole nanotransducers through droplet microfluidics. Chemical Communications, 2013, 49, 7887.	2.2	32
138	A paradigm shift in the excitation wavelength of upconversion nanoparticles. Nanoscale, 2014, 6, 8441-8443.	2.8	32
139	Novel nanostructures for efficient photon upconversion and high-efficiency photovoltaics. Solar Energy Materials and Solar Cells, 2016, 155, 446-453.	3.0	32
140	pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. Journal of Colloid and Interface Science, 2019, 547, 30-39.	5.0	32
141	Elimination of concentration dependent luminescence quenching in surface protected upconversion nanoparticles. Nanoscale, 2018, 10, 16447-16454.	2.8	31
142	Construction of a near-infrared responsive upconversion nanoplatform against hypoxic tumors <i>via</i> NO-enhanced photodynamic therapy. Nanoscale, 2020, 12, 7875-7887.	2.8	31
143	Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today, 2021, 36, 100963.	6.2	30
144	Non-covalent interactions of graphene surface: Mechanisms and applications. CheM, 2022, 8, 947-979.	5.8	29

#	Article	IF	CITATIONS
145	Recent advances in radiation therapy and photodynamic therapy. Applied Physics Reviews, 2021, 8, .	5.5	29
146	Immobilization of polydiacetylene onto silica microbeads for colorimetric detection. Journal of Materials Chemistry, 2006, 16, 546-549.	6.7	28
147	p <scp>H</scp> ―and Redoxâ€ <scp>R</scp> esponsive Poly(ethylene glycol) and Cholesterolâ€ <scp>C</scp> onjugated Poly(amido amine)s Based Micelles for Controlled Drug Delivery. Macromolecular Bioscience, 2014, 14, 347-358.	2.1	28
148	Metal-enhanced upconversion luminescence of NaYF4:Yb/Er with Ag nanoparticles. Materials Research Bulletin, 2017, 88, 182-187.	2.7	28
149	Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing. Journal of Materials Chemistry C, 2021, 9, 6781-6788.	2.7	27
150	Multi-Functional Chitosan Nanoparticles Encapsulating Quantum Dots and Gd-DTPA as Imaging Probes for Bio-Applications. Journal of Nanoscience and Nanotechnology, 2007, 7, 2389-2393.	0.9	26
151	Synthesis of hollow and mesoporous polycaprolactone nanocapsules,. Nanoscale, 2011, 3, 2215.	2.8	26
152	Influence of SiO2 layer on the plasmon quenched upconversion luminescence emission of core-shell NaYF4:Yb,Er@SiO2@Ag nanocomposites. Materials Research Bulletin, 2016, 83, 515-521.	2.7	26
153	Facile synthesis of lanthanide nanoparticles with paramagnetic, down- and up-conversion properties. Nanoscale, 2010, 2, 1240.	2.8	25
154	Oxidative cleavage-based upconversional nanosensor for visual evaluation of antioxidant activity of drugs. Biosensors and Bioelectronics, 2015, 64, 88-93.	5.3	25
155	Comparative investigation of the optical spectroscopic and thermal effect in Nd ³⁺ -doped nanoparticles. Nanoscale, 2019, 11, 10220-10228.	2.8	25
156	Dual-light triggered metabolizable nano-micelles for selective tumor-targeted photodynamic/hyperthermia therapy. Acta Biomaterialia, 2021, 119, 323-336.	4.1	25
157	Biodegradable manganese engineered nanocapsules for tumor-sensitive near-infrared persistent luminescence/magnetic resonance imaging and simultaneous chemotherapy. Theranostics, 2021, 11, 8448-8463.	4.6	25
158	Single-Line Flow Assay Platform Based on Orthogonal Emissive Upconversion Nanoparticles. Analytical Chemistry, 2021, 93, 3010-3017.	3.2	25
159	Synergistic upconversion photodynamic and photothermal therapy under cold near-infrared excitation. Journal of Colloid and Interface Science, 2021, 600, 513-529.	5.0	25
160	Investigation of polymeric amphiphilic nanoparticles as antitumor drug carriers. Journal of Materials Science: Materials in Medicine, 2009, 20, 991-999.	1.7	24
161	Microfluidic-Based Immunomodulation of Immune Cells Using Upconversion Nanoparticles in Simulated Blood Vessel–Tumor System. ACS Applied Materials & Interfaces, 2019, 11, 37513-37523.	4.0	24
162	Full shell coating or cation exchange enhances luminescence. Nature Communications, 2021, 12, 6178.	5.8	24

#	Article	IF	CITATIONS
163	The synthesis, characterization of picolinic acid:Eu3 + complex in SiO2 xerogels and energy transfer from picolinic acid to Eu3 +1. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 47, 23-27.	1.7	23
164	Designing idiosyncratic hmPCL -siRNA nanoformulated capsules for silencing and cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 579-588.	1.7	23
165	Engineering Efficient Photon Upconversion in Semiconductor Heterostructures. ACS Nano, 2019, 13, 489-497.	7.3	23
166	Programmable starving-photodynamic synergistic cancer therapy. Science China Materials, 2020, 63, 611-619.	3.5	23
167	Nonviral Vector-Based Gene Transfection of Primary Human Skeletal Myoblasts. Experimental Biology and Medicine, 2007, 232, 1477-1487.	1.1	21
168	pH- and redox-responsive self-assembly of amphiphilic hyperbranched poly(amido amine)s for controlled doxorubicin delivery. Biomaterials Science, 2015, 3, 597-607.	2.6	21
169	Mesoporous silica-coated upconversion nanocrystals for near infrared light-triggered control of gene expression in zebrafish. Nanomedicine, 2015, 10, 1051-1061.	1.7	21
170	Lutetium doping for making big core and core–shell upconversion nanoparticles. Journal of Materials Chemistry C, 2015, 3, 10267-10272.	2.7	21
171	White-light emissive upconversion nanoparticles for visual and colorimetric determination of the pesticide thiram. Mikrochimica Acta, 2019, 186, 106.	2.5	21
172	Combination of tumor fragments and nanotechnology as a therapeutic approach: Treating a tumor with tumor. Nano Today, 2020, 35, 100993.	6.2	21
173	Thermally stable fishnet-like 1T-MoS ₂ /CNT heterostructures with improved electrode performance. Journal of Materials Chemistry A, 2021, 9, 4707-4715.	5.2	21
174	Micropatterning of polystyrene nanoparticles and its bioapplications. Colloids and Surfaces B: Biointerfaces, 2005, 46, 255-260.	2.5	20
175	Single-Bead-Based Immunofluorescence Assay for Snake Venom Detection. Biotechnology Progress, 2008, 24, 245-249.	1.3	20
176	Imaging gap junctions with silica-coated upconversion nanoparticles. Medical and Biological Engineering and Computing, 2010, 48, 1033-1041.	1.6	20
177	Controllable Assembly of Upconversion Nanoparticles Enhanced Tumor Cell Penetration and Killing Efficiency. Advanced Science, 2020, 7, 2001831.	5.6	20
178	Microstructural characterization and in vitro apatite formation in CaO–P2O5–TiO2–MgO–Na2O glass-ceramics. Journal of the European Ceramic Society, 2001, 21, 169-175.	2.8	19
179	Nanoparticle-assisted micropatterning of active proteins on solid substrate. Biosensors and Bioelectronics, 2006, 21, 1638-1643.	5.3	19
180	Ag-decorated Fe3O4@SiO2 core-shell nanospheres: Seed-mediated growth preparation and their antibacterial activity during the consecutive recycling. Journal of Alloys and Compounds, 2016, 676, 113-119.	2.8	19

#	Article	IF	CITATIONS
181	Huge enhancement of upconversion luminescence by dye/Nd ³⁺ sensitization of quenching-shield sandwich structured upconversion nanocrystals under 808 nm excitation. Dalton Transactions, 2017, 46, 16180-16189.	1.6	19
182	Moving Binary-Color Heterojunction for Spatiotemporal Multilevel Encryption <i>via</i> Directional Swelling and Anion Exchange. ACS Nano, 2021, 15, 7628-7637.	7.3	19
183	Protein Micropatterning Using Surfaces Modified by Self-Assembled Polystyrene Microspheres. Langmuir, 2005, 21, 5233-5236.	1.6	17
184	Multi-functional nanoparticles for cancer therapy. Science and Technology of Advanced Materials, 2007, 8, 131-133.	2.8	17
185	Numerical Study of Pillar Shapes in Deterministic Lateral Displacement Microfluidic Arrays for Spherical Particle Separation. IEEE Transactions on Nanobioscience, 2015, 14, 660-667.	2.2	17
186	Selfâ€Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. Small, 2022, 18, e2103241.	5.2	17
187	Influence of vacuum on the formation of porous polymer films via water droplets templating. Colloid and Polymer Science, 2009, 287, 29-36.	1.0	16
188	The luminescent properties, thermal stability of phthalic acid and energy transfer from phthalic acid to Tb3+ in sol—gel derived silica xerogels. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 40, 171-175.	1.7	15
189	A new method to probe the structural evolution during the heat treatment of SiO2–P2O5 gel glasses. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 67, 99-101.	1.7	15
190	Intracellular uptake of CdSe-ZnS/polystyrene nanobeads. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 161-168.	1.6	15
191	Redoxâ€Responsive Nanoparticles with Aggregationâ€Induced Emission (AIE) Characteristic for Fluorescence Imaging. Macromolecular Bioscience, 2014, 14, 1059-1066.	2.1	15
192	Fouling and structural changes of Shirasu porous glass (SPG) membrane used in aerobic wastewater treatment process for microbubble aeration. Journal of Membrane Science, 2012, 421-422, 225-231.	4.1	14
193	Self-assembly of LaF ₃ :Yb,Er/Tm nanoplates into colloidal spheres and tailoring their upconversion emissions with fluorescent dyes. Journal of Materials Chemistry C, 2014, 2, 8949-8955.	2.7	14
194	Synthesis of Nd ³⁺ /Yb ³⁺ sensitized upconversion core–shell nanocrystals with optimized hosts and doping concentrations. RSC Advances, 2015, 5, 62899-62904.	1.7	14
195	Study on the luminescence of sulfosalicylic acid in SiO2–B2O3 xerogels. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 49, 205-210.	1.7	13
196	Mechanical characterization and optical properties analysis of organically modified silicates. Journal of Non-Crystalline Solids, 2000, 271, 88-93.	1.5	13
197	Novel Dome-Shaped Structures for High-Efficiency Patterning of Individual Microbeads in a Microfluidic Device. Small, 2007, 3, 573-579.	5.2	13
198	Effect of membrane wettability on membrane fouling and chemical durability of SPG membranes used in a microbubble-aerated biofilm reactor. Separation and Purification Technology, 2014, 127, 157-164.	3.9	12

#	Article	IF	CITATIONS
199	A facile synthetic approach to a biodegradable polydisulfide MRI contrast agent. Journal of Materials Chemistry B, 2014, 2, 5295-5301.	2.9	12
200	Targeting ligand-functionalized photothermal scaffolds for cancer cell capture and in situ ablation. Biomaterials Science, 2017, 5, 2276-2284.	2.6	12
201	Surface lanthanide activator doping for constructing highly efficient energy transfer-based nanoprobes for the on-site monitoring of atmospheric sulfur dioxide. Analyst, The, 2020, 145, 537-543.	1.7	12
202	Glucose-Targeted Hydroxyapatite/Indocyanine Green Hybrid Nanoparticles for Collaborative Tumor Therapy. ACS Applied Materials & Interfaces, 2021, 13, 37665-37679.	4.0	12
203	Rationally designed upconversion nanoparticles for NIR light-controlled lysosomal escape and nucleus-based photodynamic therapy. Mikrochimica Acta, 2021, 188, 349.	2.5	12
204	NIR-Responsive Photodynamic Nanosystem Combined with Antitumor Immune Optogenetics Bacteria for Precise Synergetic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 13094-13106.	4.0	12
205	Wirelessly Activated Nanotherapeutics for In Vivo Programmable Photodynamicâ€Chemotherapy of Orthotopic Bladder Cancer. Advanced Science, 2022, 9, e2200731.	5.6	12
206	Micropatterning of proteins on nanospheres. Colloids and Surfaces B: Biointerfaces, 2006, 48, 95-100.	2.5	11
207	Labelling of silica microspheres with fluorescent lanthanide-doped LaF3nanocrystals. Nanotechnology, 2007, 18, 275603.	1.3	11
208	A Moldable Putty Containing Silk Fibroin Yolk Shell Particles for Improved Hemostasis and Bone Repair. Advanced Healthcare Materials, 2015, 4, 432-445.	3.9	11
209	Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. Small, 2022, 18, e2200020.	5.2	11
210	Tailoring Lanthanide Upconversion Luminescence through Material Designs and Regulation Strategies. Advanced Optical Materials, 2022, 10, .	3.6	11
211	Tuning the energy migration and new insights into the mechanism of upconversion. Nanoscale, 2014, 6, 8439.	2.8	10
212	Portable Smartphoneâ€Based Platform for Realâ€Time Particle Detection in Microfluidics. Advanced Materials Technologies, 2019, 4, 1800359.	3.0	10
213	Study on the structure of SiO2–B2O3 xerogels with Eu3+ and sulfosalicylic acid as a probe. Materials Letters, 1998, 35, 144-150.	1.3	9
214	Light-activated drug release from prodrug nanoassemblies by structure destruction. Chemical Communications, 2019, 55, 13128-13131.	2.2	9
215	Phase-Change Nanotherapeutic Agents Based on Mesoporous Carbon for Multimodal Imaging and Tumor Therapy. ACS Applied Bio Materials, 2020, 3, 8705-8713.	2.3	9
216	Engineering Near-Infrared-Excitable Metal–Organic Framework for Tumor Microenvironment Responsive Therapy. ACS Applied Bio Materials, 2021, 4, 6316-6325.	2.3	9

#	Article	IF	CITATIONS
217	Perovskite Nanocrystals with Tunable Fluorescent Intensity during Anion Exchange for Dynamic Optical Encryption. ACS Applied Materials & Interfaces, 2021, 13, 47072-47080.	4.0	9
218	Elucidating the role of energy management in making brighter, and more colorful upconversion nanoparticles. Materials Today Physics, 2021, 20, 100451.	2.9	9
219	Use of the Upside-Down Method to Prepare Porous Polymer Films with Tunable Surface Pore Sizes. Langmuir, 2009, 25, 51-54.	1.6	8
220	Magnetic nanoparticle migration in microfluidic two-phase flow. Journal of Applied Physics, 2009, 105,	1.1	8
221	Photochemical mechanism of composite solid dye laser medium materials. Materials Letters, 1999, 40, 175-179.	1.3	7
222	The luminescent properties and photo-decay of sulfosalicylic acid doped ORMOSILs. Materials Letters, 2000, 42, 86-91.	1.3	7
223	Threeâ€dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for loadâ€bearing bone implants. Journal of Biomedical Materials Research Part B, 2002, 61, 1-8.	3.0	7
224	A novel drug susceptibility testing AIEgen with spatiotemporal resolved progress-reporting characteristic for therapy of drug-resistant tumor. Materials Today, 2022, 61, 117-128.	8.3	7
225	Influence of substitute groups on the properties of aromatic carboxylic acid:Eu3+ complexes in silica xerogels. Journal of Physics and Chemistry of Solids, 1998, 59, 1053-1057.	1.9	6
226	The structural information given by R curve of Eu3+ probe during the heat treatment process of SiO2–B2O3 gel glasses. Materials Letters, 1999, 41, 149-152.	1.3	6
227	Fabrication of three-dimensional hemispherical structures using photolithography. Microfluidics and Nanofluidics, 2009, 7, 721-726.	1.0	6
228	Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers. Nanoscale, 2017, 9, 14520-14532.	2.8	6
229	Phase controllable synthesis of NaMgF3:Yb3+, Er3+ nanocrystals with effective red upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2018, 29, 18320-18330.	1.1	6
230	pH-Responsive Hybrid Nanoparticles for Imaging Spatiotemporal pH Changes in Biofilm-Dentin Microenvironments. ACS Applied Materials & Interfaces, 2021, 13, 46247-46259.	4.0	6
231	Upconversion Perovskite Nanocrystal Heterostructures with Enhanced Luminescence and Stability by Lattice Matching. ACS Applied Materials & Interfaces, 2021, 13, 51362-51372.	4.0	6
232	Construction of V1.11S2 flower spheres for efficient aqueous Zn-ion batteries. Journal of Colloid and Interface Science, 2022, 625, 1002-1011.	5.0	6
233	Solubilization of Quantum Dots for Biological Applications. Journal of Biomedical Nanotechnology, 2006, 2, 165-172.	0.5	5
234	ZIF-8 encapsulated upconversion nanoprobes to evaluate pH variations in food spoilage. Mikrochimica Acta, 2022, 189, 87.	2.5	5

#	Article	IF	CITATIONS
235	Wall effects in continuous microfluidic magnetoâ€affinity cell separation. Biotechnology and Bioengineering, 2010, 106, 68-75.	1.7	4
236	An Anti logging 3D Porous Membrane for Sorting and Patterning of Microâ€Entities. Advanced Healthcare Materials, 2012, 1, 354-359.	3.9	3
237	Facile preparation of hydrophilic sodium yttrium fluoride nanorods using hydrophobic nanospheres as precursor. Journal of Materials Research, 2012, 27, 2101-2105.	1.2	3
238	Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs. Proceedings of SPIE, 2013, , .	0.8	3
239	A Biosynthesized Near-Infrared-Responsive Nanocomposite Biomaterial for Antimicrobial and Antibiofilm Treatment. ACS Applied Bio Materials, 2021, 4, 7542-7553.	2.3	3
240	H ₂ O ₂ self-providing synergistic chemodynamic/photothermal therapy using graphene oxide supported zero valence iron nanoparticles. RSC Advances, 2021, 11, 28973-28987.	1.7	3
241	Immuno-fluorescence detection of snake venom by using single bead as the assay platform. Journal of Experimental Nanoscience, 2008, 3, 111-119.	1.3	2
242	Lanthanide-Based Upconversion Nanoparticles for Connexin-Targeted Imaging in Co-cultures. Methods in Molecular Biology, 2013, 1058, 97-107.	0.4	2
243	Synthesis of dyeâ€loaded NaYF 4 :Yb, Er superparticles for tunable upconversion emissions. Micro and Nano Letters, 2015, 10, 144-146.	0.6	2
244	Photoexcitation of self-n-doped fullerene ammonium halides: The role of halide ion and a possible synergistic dual-redox cycle mechanism within their aggregate. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 373, 131-138.	2.0	2
245	Enhancement of upconversion luminescence intensity in NaMgF3:2.5%Yb3+, 0.5%Er3+ nanocrystals with Eu3+ doping. Journal of Materials Science: Materials in Electronics, 2021, 32, 20882-20890.	1.1	2
246	A Facile Synthesis of Multicolor Polystyrene Microspheres Encapsulating Upconversion Fluorescent Nanoparticles. IFMBE Proceedings, 2008, , 73-76.	0.2	2
247	Biocompatibility Study of PEI-NaYF4: Yb,Er Upconversion Nanoparticles. IFMBE Proceedings, 2008, , 82-85.	0.2	2
248	Rare Earth Nanomaterials in Fluorescence Microscopy. , 2012, , 83-106.		2
249	SYNTHESIS OF POLYSTYRENE ENCAPSULATEDZnS-COATEDCdSeNANOCOMPOSITES MODIFIED WITH PLL–PEI–PEG–FA. International Journal of Nanoscience, 2005, 04, 229-235.	0.4	1
250	Small NIR-to-VIS upconverting nanoparticles for photodynamic therapyist. , 2012, , .		1
251	Use of upconverting fluorescent nanoparticles for bioimaging. Proceedings of SPIE, 2012, , .	0.8	1
252	Water-Soluble Upconversion Nanoparticles by Micellar Route. BioNanoScience, 2013, 3, 208-215.	1.5	1

#	Article	IF	CITATIONS
253	Hollow upconversion nanoparticles: Synthesis and luminescence in comparison with their solid counterparts. Chemical Engineering Journal, 2021, 426, 131376.	6.6	1
254	A Novel Trypsin-like Serine Proteinase from the Venom of the Chinese Scorpion Buthus martensii Karsch. IFMBE Proceedings, 2008, , 829-832.	0.2	1
255	Chitosan/Calcium Phosphate Scaffolds for Bone Tissue Engineering. Materials Research Society Symposia Proceedings, 2000, 662, 1.	0.1	0
256	Title is missing!. Journal of Materials Science Letters, 2001, 20, 303-305.	0.5	0
257	Ordered Honeycomb-structured Polymer Films by A Breath Figure Method in Vacuum. IFMBE Proceedings, 2008, , 337-340.	0.2	0
258	Capture of Circulating Tumor Cells (CTCs) Using a Novel Micro-Device. , 2011, , .		0
259	Simultaneous gene delivery and tracking of cells using fluorescent upconversion nanoparticles for cell therapy. Materials Research Society Symposia Proceedings, 2011, 1355, 1.	0.1	0
260	Upconverting fluorescent nanoparticles for biodetection and photoactivation. , 2013, , .		0
261	Multi-Functional Fluorescent Upconversion Nanocrystals for Simultaneous Imaging and Delivery of Peptide Toxins. Key Engineering Materials, 0, 605, 364-367.	0.4	0
262	Upconverting Fluorescent Nanoparticles for Bioimaging and Therapy. , 2012, , .		0