Michael N Fardis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3018825/publications.pdf

Version: 2024-02-01

75 2,430 24 48 papers citations h-index g-index

82 82 82 1618
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A reaction engineering approach to the problem of concrete carbonation. AICHE Journal, 1989, 35, 1639-1650.	1.8	258
2	FRP-encased concrete as a structural material. Magazine of Concrete Research, 1982, 34, 191-202.	0.9	250
3	Experimental investigation and mathematical modeling of the concrete carbonation problem. Chemical Engineering Science, 1991, 46, 1333-1338.	1.9	236
4	Seismic Design, Assessment and Retrofitting of Concrete Buildings. Geotechnical, Geological and Earthquake Engineering, 2009, , .	0.1	190
5	Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars. Structural Concrete, 2010, 11, 93-108.	1.5	95
6	Seismic Retrofitting of Columns with Lap Spliced Smooth Bars Through FRP or Concrete Jackets. Journal of Earthquake Engineering, 2007, 11, 653-674.	1.4	88
7	Deformations at flexural yielding of members with continuous or lap-spliced bars. Structural Concrete, 2010, 11, 127-138.	1.5	88
8	Strengthening of historic masonry structures with composite materials. Materiaux Et Constructions, 1997, 30, 486-496.	0.3	86
9	Load-Path Effects in Column Biaxial Bending with Axial Force. Journal of Engineering Mechanics - ASCE, 1995, 121, 596-605.	1.6	83
10	Residual displacements of RC structures as SDOF systems. Earthquake Engineering and Structural Dynamics, 2015, 44, 713-734.	2.5	66
11	Effectiveness of Seismic Strengthening Techniques for Masonry Buildings. Journal of Structural Engineering, 1992, 118, 1884-1902.	1.7	63
12	Nearâ€fault effects on residual displacements of RC structures. Earthquake Engineering and Structural Dynamics, 2016, 45, 1391-1409.	2.5	61
13	Monotonic and Cyclic Constitutive Law for Concrete. Journal of Engineering Mechanics - ASCE, 1983, 109, 516-536.	1.6	60
14	A displacement-based seismic design procedure for RC buildings and comparison with EC8. Earthquake Engineering and Structural Dynamics, 2001, 30, 1439-1462.	2.5	47
15	Strength, deformation capacity and failure modes of RC walls under cyclic loading. Bulletin of Earthquake Engineering, 2015, 13, 3277-3300.	2.3	45
16	Estimation of inelastic seismic deformations in asymmetric multistorey RC buildings. Earthquake Engineering and Structural Dynamics, 2007, 36, 1209-1234.	2.5	34
17	Models for FRP-wrapped rectangular RC columns with continuous or lap-spliced bars under cyclic lateral loading. Engineering Structures, 2013, 57, 199-212.	2.6	34
18	Physicochemical processes and mathematical modeling of concrete chlorination. Chemical Engineering Science, 1996, 51, 505-513.	1.9	33

#	Article	IF	CITATIONS
19	RC buildings retrofitted by converting frame bays into RC walls. Bulletin of Earthquake Engineering, 2013, 11, 1541-1561.	2.3	31
20	Capacity design: Early history. Earthquake Engineering and Structural Dynamics, 2018, 47, 2887-2896.	2.5	31
21	Analysis of Coherent Multistate Systems. IEEE Transactions on Reliability, 1981, R-30, 117-122.	3.5	30
22	Seismic fragility of RC framed and wall-frame buildings designed to the EN-Eurocodes. Bulletin of Earthquake Engineering, 2012, 10, 1767-1793.	2.3	28
23	Bounding Surface Model for Cyclic Biaxial Bending of RC Sections. Journal of Engineering Mechanics - ASCE, 1991, 117, 2748-2769.	1.6	26
24	Computed versus Observed Seismic Response and Damage of Masonry Buildings. Journal of Structural Engineering, 1992, 118, 1804-1821.	1.7	25
25	Unbonded brickwork for the protection of infills from seismic damage. Engineering Structures, 2017, 131, 614-624.	2.6	23
26	Nonlinear dynamic v elastic analysis for seismic deformation demands in concrete bridges having deck integral with the piers. Bulletin of Earthquake Engineering, 2011, 9, 519-535.	2.3	21
27	Concrete or FRP Jacketing of Columns with Lap Splices for Seismic Rehabilitation. Journal of Advanced Concrete Technology, 2006, 4, 431-444.	0.8	19
28	Experimental Investigation of Concrete Frames Infilled with rc for Seismic Rehabilitation. Journal of Structural Engineering, 2014, 140, .	1.7	19
29	Seismic Performance of RC Frames Designed to Eurocode 8 or to the Greek Codes 2000. Bulletin of Earthquake Engineering, 2004, 2, 221-259.	2.3	18
30	Performance―and displacementâ€based seismic design and assessment of concrete structures in <i>fib</i> Model Code 2010. Structural Concrete, 2013, 14, 215-229.	1.5	18
31	Flexural rotation capacity models fitted to test results using different statistical approaches. Structural Concrete, 2018, 19, 608-624.	1.5	18
32	RC Column Model for Inelastic Seismic Response Analysis in 3D. Journal of Engineering Mechanics - ASCE, 1991, 117, 2770-2787.	1.6	17
33	Stiffness and cyclic deformation capacity of circular RC columns with or without lap-splices and FRP wrapping. Bulletin of Earthquake Engineering, 2013, 11, 1447-1466.	2.3	17
34	Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure. Earthquake and Structures, 2014, 6, 689-713.	1.0	17
35	Ultimate Strain Criteria for RC Members in Monotonic or Cyclic Flexure. Journal of Structural Engineering, 2016, 142, .	1.7	17
36	Effect of Load Cycling, FRP Jackets, and Lap-Splicing of Longitudinal Bars on the Effective Stiffness and Ultimate Deformation of Flexure-Controlled RC Members. Journal of Structural Engineering, 2018, 144, .	1.7	15

#	Article	IF	CITATIONS
37	Models of the flexure-controlled strength, stiffness and cyclic deformation capacity of rectangular RC columns with smooth bars, including lap-splicing and FRP jackets. Bulletin of Earthquake Engineering, 2018, 16, 341-375.	2.3	15
38	A displacement-based seismic design procedure for concrete bridges having deck integral with the piers. Bulletin of Earthquake Engineering, 2011, 9, 537-560.	2.3	13
39	Pseudodynamic response of torsionally unbalanced two-storey test structure. Earthquake Engineering and Structural Dynamics, 2007, 36, 1065-1087.	2.5	11
40	Hybrid simulation of bridge pier uplifting. Bulletin of Earthquake Engineering, 2017, 15, 3385-3398.	2.3	11
41	From Force- to Displacement-Based Seismic Design of Concrete Structures and Beyond. Geotechnical, Geological and Earthquake Engineering, 2018, , 101-122.	0.1	11
42	Nonlinear finite element for modeling reinforced concrete columns in three-dimensional dynamic analysis. Computers and Structures, 1991, 40, 1405-1419.	2.4	10
43	Fragility Functions of Road and Railway Bridges. Geotechnical, Geological and Earthquake Engineering, 2014, , 259-297.	0.1	10
44	Title is missing!. Journal of Earthquake Engineering, 2002, 6, 213.	1.4	9
45	Cyclic shear resistance for seismic design, based on monotonic shear models in fib Model Code 2010 and in the 2018 draft of Eurocode 2. Structural Concrete, 2020, 21, 129-150.	1.5	8
46	Shear strength model for RC joints, consistent with the shear design rules for prismatic members in the second-generation Eurocodes. Bulletin of Earthquake Engineering, 2021, 19, 889-917.	2.3	8
47	Stiffness Matrix of Freeâ€Standing Helical Stairs. Journal of Structural Engineering, 1987, 113, 74-87.	1.7	7
48	Eigenvalues and modes of distributed-mass symmetric multispan bridges with restrained ends for seismic response analysis. Engineering Structures, 2013, 51, 141-149.	2.6	7
49	Inelastic shears in ductile RC walls of mid-rise wall-frame buildings and comparison to Eurocode 8. Bulletin of Earthquake Engineering, 2015, 13, 841-869.	2.3	7
50	Dry-jointed precast concrete frame on rocking or fixed footings under cyclic lateral loading. Bulletin of Earthquake Engineering, 2017, 15, 4915-4938.	2.3	7
51	Tests and analysis of RC building, with or without masonry infills, for instant column loss. Engineering Structures, 2019, 193, 57-67.	2.6	7
52	Cyclic shear resistance model for Eurocode 8 consistent with the second-generation Eurocode 2. Bulletin of Earthquake Engineering, 2020, 18, 2891-2915.	2.3	7
53	Discussion: FRP-encased concrete as a structural material. Magazine of Concrete Research, 1983, 35, 242-243.	0.9	6
54	Simple Models for Inelastic Seismic Analysis of Asymmetric Multistory RC Buildings. Journal of Earthquake Engineering, 2008, 12, 704-727.	1.4	6

#	Article	IF	CITATIONS
55	A levelsâ€ofâ€approximation approach to seismic design or assessment of beamâ€column joints in shear. Structural Concrete, 2021, 22, 1259-1284.	1.5	6
56	Uplift of deck or footings in bridges with distributed mass subjected to transverse earthquake. Earthquake Engineering and Structural Dynamics, 2015, 44, 2755-2773.	2.5	5
57	Energy dissipation models for RC members and structures. Earthquake Engineering and Structural Dynamics, 2019, 48, 287-305.	2.5	5
58	Experimental study of a three-storey concrete frame structure with smooth bars under cyclic lateral loading. Bulletin of Earthquake Engineering, 2020, 18, 5859-5884.	2.3	5
59	Containment liner seismic reliability under statistical uncertainty. Nuclear Engineering and Design, 1978, 49, 279-294.	0.8	3
60	Seismic Rehabilitation of Concrete Buildings by Converting Frame Bays into RC Walls. Geotechnical, Geological and Earthquake Engineering, 2014, , 261-280.	0.1	3
61	Multistate reliability analysis. Nuclear Engineering and Design, 1982, 71, 329-336.	0.8	2
62	Stiffness of Freeâ€Standing Stairs with 180° Turn. Journal of Structural Engineering, 1987, 113, 2415-2438.	1.7	2
63	Strength, stiffness and cyclic deformation capacity of RC frames converted into walls by infilling with RC. Bulletin of Earthquake Engineering, 2016, 14, 769-803.	2.3	2
64	Energy dissipation in reinforced concrete members before or after yielding. Earthquake Engineering and Structural Dynamics, 2022, 51, 974-997.	2. 5	2
65	Discussion of " Stiffness Matrix of Freeâ€Standing Helical Stairs ―by Michael N. Fardis, Annaâ€Maria O. Skouteropoulou, and Stathis N. Bousias (Jan., 1987, Vol. 113, No. 1). Journal of Structural Engineering, 1988, 114, 2174-2174.	1.7	1
66	Transnational access to European seismic research facilities. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2015, 168, 775-787.	0.4	1
67	Analysis of first building retrofitted to EN-Eurocode 8 versus performance under near-design-level earthquake. Bulletin of Earthquake Engineering, 2015, 13, 2567-2590.	2.3	1
68	Decompression Events during Transverse Seismic Response of Symmetric Three-Pier Bridges with Distributed Mass. Journal of Structural Engineering, 2018, 144, .	1.7	1
69	R/C Containment Safety Under Hydrogen Detonation. Journal of Structural Engineering, 1983, 109, 2511-2527.	1.7	0
70	Uniform reliability safety format for seismic design of reinforced concrete structures. Earthquake Engineering and Structural Dynamics, 1994, 23, 413-431.	2.5	0
71	Pseudo-Dynamic Tests of 4-Storey Non-Ductile Frames with RC Infilling of the Bay. Geotechnical, Geological and Earthquake Engineering, 2014, , 281-301.	0.1	0
72	Multispan bridges with distributed deck and pier mass and pierâ€flexureâ€deckâ€torsion coupling under transverse excitation—Analytical solution, parametric studies, design implications. Earthquake Engineering and Structural Dynamics, 2021, 50, 3713.	2.5	O

#	Article	IF	CITATIONS
73	Reinforced Concrete Structures in Earthquake-Resistant Construction. , 2015, , 2084-2104.		O
74	Transnational access to European seismic research facilities. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2015 , , $1-13$.	0.4	0
75	Flat slabs as primary seismic elements in second-generation Eurocode 8. Bulletin of Earthquake Engineering, 0 , 0 , 1 .	2.3	0