Shanqing Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3018717/publications.pdf

Version: 2024-02-01

361413 501196 2,771 28 20 28 h-index citations g-index papers 28 28 28 3466 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crushing Behavior of Functionally Graded Lattice. Jom, 2021, 73, 4130-4140.	1.9	8
2	Dynamic performance of auxetic structures: experiments and simulation. Smart Materials and Structures, 2020, 29, 055031.	3.5	38
3	Impact behaviour of plate-like assemblies made of new and existing interlocking bricks: A comparative study. International Journal of Impact Engineering, 2018, 116, 79-93.	5.0	21
4	Design optimization and additive manufacturing of nodes in gridshell structures. Engineering Structures, 2018, 160, 161-170.	5. 3	52
5	Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading. International Journal of Impact Engineering, 2018, 114, 111-122.	5.0	56
6	Concurrent topological design of composite structures and materials containing multiple phases of distinct Poisson's ratios. Engineering Optimization, 2018, 50, 599-614.	2.6	11
7	Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption. Thin-Walled Structures, 2018, 123, 100-113.	5.3	53
8	Examination of Needle Surface Corrosion in Electroacupuncture. Acupuncture in Medicine, 2018, 36, 367-376.	1.0	2
9	Mechanical behaviour of a creased thin strip. Mechanical Sciences, 2018, 9, 91-102.	1.0	9
10	Design of dimpled tubular structures for energy absorption. Thin-Walled Structures, 2017, 112, 31-40.	5. 3	34
11	Design of Hierarchical Structures for Synchronized Deformations. Scientific Reports, 2017, 7, 41183.	3.3	11
12	Effect of sample orientation and initial microstructures on the dynamic recrystallization of a Magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 691, 150-154.	5.6	27
13	High-speed spinning disks on flexible threads. Scientific Reports, 2017, 7, 13111.	3.3	7
14	Maximizing the effective Young's modulus of a composite material by exploiting the Poisson effect. Composite Structures, 2016, 153, 593-600.	5.8	32
15	Energy absorption of thin-walled tubes with pre-folded origami patterns: Numerical simulation and experimental verification. Thin-Walled Structures, 2016, 103, 33-44.	5.3	125
16	Lattice Ti structures with low rigidity but compatible mechanical strength: Design of implant materials for trabecular bone. International Journal of Precision Engineering and Manufacturing, 2016, 17, 793-799.	2.2	26
17	Design of lattice structures with controlled anisotropy. Materials and Design, 2016, 93, 443-447.	7.0	212
18	Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016, 83, 127-141.	11.4	1,492

#	Article	IF	CITATION
19	Crush responses of composite cylinder under quasi-static and dynamic loading. Composite Structures, 2015, 131, 90-98.	5.8	87
20	Collision and rebounding of circular rings on rigid target. International Journal of Impact Engineering, 2015, 79, 14-21.	5.0	22
21	Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation. Materials & Design, 2015, 74, 138-149.	5.1	55
22	FINITE ELEMENT ANALYSIS OF THE DYNAMIC BEHAVIOR OF ALUMINUM HONEYCOMBS. International Journal of Computational Methods, 2014, 11, 1344001.	1.3	11
23	Examination of Surface Conditions and Other Physical Properties of Commonly Used Stainless Steel Acupuncture Needles. Acupuncture in Medicine, 2014, 32, 146-154.	1.0	25
24	Dynamic behaviour of high strength steel parts developed through laser assisted direct metal deposition. Materials & Design, 2014, 64, 650-659.	5.1	24
25	Strength enhancement of aluminium foams and honeycombs by entrapped air under dynamic loadings. International Journal of Impact Engineering, 2014, 74, 120-125.	5.0	32
26	Dynamic tensile behaviour of TWIP steel under intermediate strain rate loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 573, 132-140.	5.6	57
27	Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Composite Structures, 2012, 94, 2326-2336.	5.8	189
28	Strength enhancement of aluminium honeycombs caused by entrapped air under dynamic out-of-plane compression. International Journal of Impact Engineering, 2012, 47, 1-13.	5.0	53