Meng-Che Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3018649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Active Oxygen Coordinated Configuration of Fe Singleâ€Atom Catalyst toward Electrochemical Reduction of CO ₂ into Multiâ€Carbon Products. Advanced Functional Materials, 2022, 32, .	7.8	37
2	Synergistic Hybrid Support Comprising TiO ₂ –Carbon and Ordered PdNi Alloy for Direct Hydrogen Peroxide Synthesis. ACS Catalysis, 2021, 11, 8407-8416.	5.5	22
3	lodide Oxidation Reaction Catalyzed by Ruthenium–Tin Surface Alloy Oxide for Efficient Production of Hydrogen and lodine Simultaneously. ACS Sustainable Chemistry and Engineering, 2021, 9, 8803-8812.	3.2	14
4	Engineering heterometallic bonding in bimetallic electrocatalysts: towards optimized hydrogen oxidation and evolution reactions. Catalysis Science and Technology, 2020, 10, 893-903.	2.1	15
5	Electrocatalytic reduction of carbon dioxide on gold–copper bimetallic nanoparticles: Effects of surface composition on selectivity. Electrochimica Acta, 2020, 356, 136756.	2.6	24
6	Al–Sc dual-doped LiGe ₂ (PO ₄) ₃ – a NASICON-type solid electrolyte with improved ionic conductivity. Journal of Materials Chemistry A, 2020, 8, 11302-11313.	5.2	36
7	High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Applied Energy Materials, 2020, 3, 4499-4508.	2.5	95
8	A review of transition metalâ€based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society, 2019, 66, 829-865.	0.8	82
9	Immobilized Single Molecular Molybdenum Disulfide on Carbonized Polyacrylonitrile for Hydrogen Evolution Reaction. ACS Nano, 2019, 13, 6720-6729.	7.3	40
10	pH-Dependent Structure–Activity Relationship of Polyaniline-Intercalated FeOCl for Heterogeneous Fenton Reactions. ACS Omega, 2019, 4, 21945-21953.	1.6	20
11	Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2019, 9, 117-129.	5.5	103
12	Selective and Low Overpotential Electrochemical CO2 Reduction to Formate on CuS Decorated CuO Heterostructure. Catalysis Letters, 2019, 149, 860-869.	1.4	36
13	Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale, 2019, 11, 2710-2720.	2.8	118
14	Conversion of Carbon Dioxide into Valuable Chemicals through Electrochemical Reduction Using Transition Metal Electrocatalysts. ECS Meeting Abstracts, 2019, , .	0.0	0
15	Universal Mechanism and Rate Equation for Hydrogen Oxidation Reaction. ECS Meeting Abstracts, 2019, , .	0.0	0
16	Transition-Metal-Doped TiO2 Decorated Nife Layered Double Hydroxide Catalyst in Alkaline Oxygen Evolution Reaction. ECS Meeting Abstracts, 2019, , .	0.0	0
17	In Situ Confined Synthesis of Ti ₄ O ₇ Supported Platinum Electrocatalysts with Enhanced Activity and Stability for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 1155-1165.	1.8	20
18	Descriptor study by density functional theory analysis for the direct synthesis of hydrogen peroxide using palladium–gold and palladium–mercury alloy catalysts. Molecular Systems Design and Engineering, 2018, 3, 896-907.	1.7	8

Meng-Che Tsai

#	Article	IF	CITATIONS
19	Copper and Copperâ€Based Bimetallic Catalysts for Carbon Dioxide Electroreduction. Advanced Materials Interfaces, 2018, 5, 1800919.	1.9	72
20	Atomically Dispersed Feâ€N <i>_x</i> /C Electrocatalyst Boosts Oxygen Catalysis via a New Metalâ€Organic Polymer Supramolecule Strategy. Advanced Energy Materials, 2018, 8, 1801226.	10.2	216
21	Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO ₂ -embedded polyethylene oxide. Journal of Materials Chemistry A, 2017, 5, 6708-6715.	5.2	66
22	DFT study reveals geometric and electronic synergisms of palladium-mercury alloy catalyst used for hydrogen peroxide formation. Applied Catalysis A: General, 2017, 547, 69-74.	2.2	16
23	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 21002-21015.	5.2	10
24	Design of transition-metal-doped TiO ₂ as a multipurpose support for fuel cell applications: using a computational high-throughput material screening approach. Molecular Systems Design and Engineering, 2017, 2, 449-456.	1.7	10
25	Platinum loaded on dual-doped TiO2 as an active and durable oxygen reduction reaction catalyst. NPG Asia Materials, 2017, 9, e403-e403.	3.8	43
26	Biosensors Incorporating Bimetallic Nanoparticles. Nanomaterials, 2016, 6, 5.	1.9	58
27	Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO ₂ Support Enhances the Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 6551-6559.	5.5	103
28	Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science, 2016, 9, 323-356.	15.6	1,457