
Qasim Zaidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3017902/publications.pdf Version: 2024-02-01

ΟλειΜ ΖΛΙΟΙ

#	Article	IF	CITATIONS
1	Neural Locus of Color Afterimages. Current Biology, 2012, 22, 220-224.	3.9	324
2	Chromatic properties of neurons in macaque MT. Visual Neuroscience, 1994, 11, 455-466.	1.0	155
3	Neuronal nonlinearity explains greater visual spatial resolution for darks than lights. Proceedings of the United States of America, 2014, 111, 3170-3175.	7.1	115
4	Specificity of Cone Inputs to Macaque Retinal Ganglion Cells. Journal of Neurophysiology, 2006, 95, 837-849.	1.8	109
5	Visual mechanisms that signal the direction of color changes. Vision Research, 1993, 33, 1037-1051.	1.4	97
6	Perception of three-dimensional shape from texture is based on patterns of oriented energy. Vision Research, 2000, 40, 217-242.	1.4	96
7	Mechanisms of simultaneous color induction. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1986, 3, 1752.	1.5	94
8	Lateral interactions within color mechanism in simultaneous induced contrast. Vision Research, 1992, 32, 1695-1707.	1.4	89
9	Neuronal and Perceptual Differences in the Temporal Processing of Darks and Lights. Neuron, 2014, 82, 224-234.	8.1	83
10	Colour constancy in context: Roles for local adaptation and levels of reference. Journal of Vision, 2004, 4, 3.	0.3	73
11	Darks Are Processed Faster Than Lights. Journal of Neuroscience, 2011, 31, 8654-8658.	3.6	71
12	Interactions between color and luminance in the perception of orientation. Journal of Vision, 2003, 3, 1.	0.3	67
13	Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 2608.	1.5	60
14	Adaptive orthogonalization of opponent-color signals. Biological Cybernetics, 1993, 69, 415-428.	1.3	58
15	The effect of adaptation on the differential sensitivity of the S-cone color system. Vision Research, 1992, 32, 1297-1318.	1.4	57
16	Induced Effects of Backgrounds and Foregrounds in Three-Dimensional Configurations: The Role of T-Junctions. Perception, 1997, 26, 395-408.	1.2	53
17	Identification of illuminant and object colors: heuristic-based algorithms. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15, 1767.	1.5	51
18	Rigid Objects That Appear to Bend. Perception, 1998, 27, 799-802.	1.2	48

#	Article	IF	CITATIONS
19	Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina. Journal of Neuroscience, 2018, 38, 1520-1540.	3.6	47
20	Salience of unique hues and implications for color theory. Journal of Vision, 2015, 15, 10-10.	0.3	46
21	Limits of lighness identification for real objects under natural viewing conditions. Journal of Vision, 2004, 4, 9.	0.3	42
22	Chromatic and luminance signals in visual memory. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1992, 9, 877.	1.5	39
23	Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching. Vision Research, 2002, 42, 211-226.	1.4	39
24	Cortical Balance Between ON and OFF Visual Responses Is Modulated by the Spatial Properties of the Visual Stimulus. Cerebral Cortex, 2019, 29, 336-355.	2.9	39
25	Sensory and physical determinants of perceived achromatic transparency. Journal of Vision, 2002, 2, 3.	0.3	38
26	Discerning nonrigid 3D shapes from motion cues. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1663-1668.	7.1	38
27	Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina. Journal of Neuroscience, 2019, 39, 7893-7909.	3.6	36
28	The effects of prolonged temporal modulation on the differential response of color mechanisms. Vision Research, 1992, 32, 2065-2075.	1.4	35
29	Functional implications of orientation maps in primary visual cortex. Nature Communications, 2016, 7, 13529.	12.8	35
30	Three-dimensional shape from non-homogeneous textures: Carved and stretched surfaces. Journal of Vision, 2004, 4, 3.	0.3	33
31	Color strategies for object identification. Vision Research, 2008, 48, 2673-2681.	1.4	32
32	Accuracy of color scission for spectral transparencies. Journal of Vision, 2002, 2, 3.	0.3	30
33	Perceptual Spaces: Mathematical Structures to Neural Mechanisms. Journal of Neuroscience, 2013, 33, 17597-17602.	3.6	30
34	Visual processing of motion boundaries. Vision Research, 1995, 35, 807-826.	1.4	29
35	Brightness Induction from Uniform and Complex Surrounds: A General Model. Vision Research, 1996, 36, 1893-1906.	1.4	29
36	Color constancy in a rough world. Color Research and Application, 2001, 26, S192-S200.	1.6	29

#	Article	IF	CITATIONS
37	Limitations on shape information provided by texture cues. Vision Research, 2002, 42, 815-835.	1.4	29
38	Frequency-based heuristics for material perception. Journal of Vision, 2013, 13, 7-7.	0.3	29
39	Surround effects on the shape of the temporal contrast-sensitivity function. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 2517.	1.5	28
40	Evolution of Neural Computations: Mantis Shrimp and Human Color Decoding. I-Perception, 2014, 5, 492-496.	1.4	27
41	Adaptation to textured chromatic fields. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15, 23.	1.5	26
42	Perceived transparency of neutral density filters across dissimilar backgrounds. Journal of Vision, 2004, 4, 5.	0.3	26
43	Visual inferences of material changes: color as clue and distraction. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 686-700.	2.8	25
44	Illuminant color perception of spectrally filtered spotlights. Journal of Vision, 2004, 4, 2.	0.3	23
45	Decorrelation of L- and M-cone signals. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 3430.	1.5	22
46	Lightness identification of patterned three-dimensional, real objects. Journal of Vision, 2006, 6, 3.	0.3	22
47	Perceptual Assumptions and Projective Distortions in a Three-Dimensional Shape Illusion. Perception, 2000, 29, 171-200.	1.2	21
48	Effect of spatial configuration on motion aftereffects. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 1433.	1.5	20
49	Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision. Journal of Vision, 2017, 17, 5.	0.3	20
50	Steps towards neural decoding of colors. Current Opinion in Behavioral Sciences, 2019, 30, 169-177.	3.9	18
51	Observer strategies in perception of 3-D shape from isotropic textures: developable surfaces. Vision Research, 2003, 43, 2741-2758.	1.4	17
52	The role of color in recognizing material changes. Ophthalmic and Physiological Optics, 2010, 30, 626-631.	2.0	17
53	Time-course of S-cone system adaptation to simple and complex fields. Vision Research, 2003, 43, 1135-1147.	1.4	16
54	Factors governing the speed of color adaptation in foveal versus peripheral vision. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A220.	1.5	16

#	Article	IF	CITATIONS
55	Motion energy versus position tracking: spatial, temporal and chromatic parameters. Vision Research, 2000, 40, 3613-3635.	1.4	15
56	Erratum to "Information limitations in perception of shape from texture― Vision Research, 2001, 41, 2927-2942.	1.4	15
57	Three-dimensional shape perception from chromatic orientation flows. Visual Neuroscience, 2006, 23, 323-330.	1.0	15
58	Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex. Cerebral Cortex, 2015, 25, 3877-3893.	2.9	15
59	Amblyopia Affects the ON Visual Pathway More than the OFF. Journal of Neuroscience, 2019, 39, 6276-6290.	3.6	15
60	Geometrical structure of perceptual color space: Mental representations and adaptation invariance. Journal of Vision, 2019, 19, 1.	0.3	14
61	Veridicality of three-dimensional shape perception predicted from amplitude spectra of natural textures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 2430.	1.5	13
62	Eye Movements and the Neural Basis of Context Effects on Visual Sensitivity. Journal of Neuroscience, 2014, 34, 8119-8129.	3.6	13
63	A theory of cortical map formation in the visual brain. Nature Communications, 2022, 13, 2303.	12.8	13
64	Efficiency of extracting stereo-driven object motions. Journal of Vision, 2013, 13, 18-18.	0.3	12
65	Motion changes response balance between ON and OFF visual pathways. Communications Biology, 2018, 1, 60.	4.4	12
66	Fundamental Failures of Shape Constancy Resulting from Cortical Anisotropy. Journal of Neuroscience, 2007, 27, 12540-12545.	3.6	10
67	Picture perception reveals mental geometry of 3D scene inferences. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7807-7812.	7.1	10
68	The utility of shape attributes in deciphering movements of non-rigid objects. Journal of Vision, 2010, 10, 29-29.	0.3	9
69	Effect of Age and Glaucoma on the Detection of Darks and Lights. , 2015, 56, 7000.		9
70	Neural basis of 3-D shape aftereffects. Vision Research, 2008, 48, 244-252.	1.4	7
71	Time course of adaptation along the RG cardinal axis. Color Research and Application, 2001, 26, S43-S47.	1.6	6
72	Similarities between visual processing of shear and uniform motion. Vision Research, 2002, 42, 3005-3017.	1.4	6

#	Article	IF	CITATIONS
73	Retinal Adaptation Abnormalities in Primary Open-Angle Glaucoma. Investigative Ophthalmology and Visual Science, 2015, 56, 1329-1334.	3.3	6
74	Troxler Fading, Eye Movements, and Retinal Ganglion Cell Properties. I-Perception, 2014, 5, 611-612.	1.4	5
75	Color constancy in a rough world. Color Research and Application, 2001, 26, S192-S200.	1.6	5
76	Release from Cross-Orientation Suppression Facilitates 3D Shape Perception. PLoS ONE, 2009, 4, e8333.	2.5	4
77	Visual Effects of Haptic Feedback Are Large but Local. PLoS ONE, 2011, 6, e19877.	2.5	4
78	Mental geometry of perceiving 3D size in pictures. Journal of Vision, 2020, 20, 4.	0.3	4
79	Mental geometry of three-dimensional size perception. Journal of Vision, 2020, 20, 14.	0.3	4
80	Generic assumptions shared by visual perception and imagery. Behavioral and Brain Sciences, 2002, 25, 215-216.	0.7	2
81	Adaptive orthogonalization of opponent-color signals. Biological Cybernetics, 1993, 69, 415-428.	1.3	1
82	Hard-Wired and Plastic Mechanisms in 3-D Shape Perception. Advances in Computer Vision and Pattern Recognition, 2013, , 311-338.	1.3	1
83	Perception of 3D shape from homogeneous and nonhomogeneous surface textures. , 2004, , .		0
84	Segregating animals in naturalistic surroundings: interaction of color distributions and mechanisms. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, A273.	1.5	0
85	Spatial Induction in Color Scission. I-Perception, 2021, 12, 204166952110003.	1.4	0
86	Properties of lateral interaction in color and brightness induction. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, A143.	1.5	0
87	Perceptual scale for transparency: Common fate overrides geometrical and color cues. Journal of Vision, 2022, 22, 6.	0.3	0