Gerhard Schlosser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3017830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The origin and evolution of cell types. Nature Reviews Genetics, 2016, 17, 744-757.	7.7	572
2	Induction and specification of cranial placodes. Developmental Biology, 2006, 294, 303-351.	0.9	354
3	Molecular anatomy of placode development in Xenopus laevis. Developmental Biology, 2004, 271, 439-466.	0.9	243
4	Making Senses. International Review of Cell and Molecular Biology, 2010, 283, 129-234.	1.6	187
5	Development of neurogenic placodes inXenopus laevis. Journal of Comparative Neurology, 2000, 418, 121-146.	0.9	169
6	Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. Developmental Biology, 2005, 288, 40-59.	0.9	150
7	Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 347-399.	0.6	120
8	Self-re-Production and Functionality. SynthÃ^se, 1998, 116, 303-354.	0.6	103
9	Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. Developmental Biology, 2008, 320, 199-214.	0.9	100
10	MARCKS and MARCKS-like proteins in development and regeneration. Journal of Biomedical Science, 2018, 25, 43.	2.6	95
11	Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. Development (Cambridge), 2012, 139, 1175-1187.	1.2	86
12	The evolutionary history of vertebrate cranial placodes – I: Cell type evolution. Developmental Biology, 2014, 389, 82-97.	0.9	79
13	Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors. Mechanisms of Development, 2001, 103, 189-192.	1.7	76
14	Development and evolution of lateral line placodes in amphibians I. Development. Zoology, 2002, 105, 119-146.	0.6	73
15	Origin and segregation of cranial placodes in Xenopus laevis. Developmental Biology, 2011, 360, 257-275.	0.9	70
16	Do vertebrate neural crest and cranial placodes have a common evolutionary origin?. BioEssays, 2008, 30, 659-672.	1.2	67
17	Modularity and the units of evolution. Theory in Biosciences, 2002, 121, 1-80.	0.6	63
18	Secondary neurogenesis in the brain of the African clawed frog,Xenopus laevis, as revealed by PCNA,Delta-1,Neurogenin-related-1, andNeuroD expression. Journal of Comparative Neurology, 2005, 489, 387-402.	0.9	61

GERHARD SCHLOSSER

#	Article	IF	CITATIONS
19	The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Developmental Biology, 2014, 389, 98-119.	0.9	58
20	Development and evolution of lateral line placodes in amphibians. – II. Evolutionary diversification. Zoology, 2002, 105, 177-193.	0.6	56
21	Loss of Ectodermal Competence for Lateral Line Placode Formation in the Direct Developing Frog Eleutherodactylus coqui. Developmental Biology, 1999, 213, 354-369.	0.9	47
22	Early embryonic specification of vertebrate cranial placodes. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 349-363.	5.9	47
23	Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. ELife, 2016, 5, .	2.8	45
24	Evolution of Nerve Development in Frogs; pp. 94–112. Brain, Behavior and Evolution, 1997, 50, 94-112.	0.9	41
25	A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis. BMC Biology, 2018, 16, 79.	1.7	35
26	Vertebrate Cranial Placodes as Evolutionary Innovations—The Ancestor's Tale. Current Topics in Developmental Biology, 2015, 111, 235-300.	1.0	31
27	Hypobranchial placodes in Xenopus laevis give rise to hypobranchial ganglia, a novel type of cranial ganglia. Cell and Tissue Research, 2003, 312, 21-29.	1.5	28
28	Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui. Anatomy and Embryology, 2003, 206, 215-227.	1.5	26
29	A Short History of Nearly Every Sense—The Evolutionary History of Vertebrate Sensory Cell Types. Integrative and Comparative Biology, 2018, 58, 301-316.	0.9	24
30	How old genes make a new head: redeployment of Six and Eya genes during the evolution of vertebrate cranial placodes. Integrative and Comparative Biology, 2007, 47, 343-359.	0.9	21
31	Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes. Developmental Biology, 2017, 431, 152-167.	0.9	19
32	From so simple a beginning – what amphioxus can teach us about placode evolution. International Journal of Developmental Biology, 2017, 61, 633-648.	0.3	18
33	Lateral Line Placodes Are Induced during Neurulation in the Axolotl. Developmental Biology, 2001, 234, 55-71.	0.9	16
34	Development of the retina is altered in the directly developing frog Eleutherodactylus coqui (Leptodactylidae). Neuroscience Letters, 1997, 224, 153-156.	1.0	15
35	Functional analysis of centipede development supports roles for Wnt genes in posterior development and segment generation. Evolution & Development, 2015, 17, 49-62.	1.1	12
36	A simple model of co-evolutionary dynamics caused by epistatic selection. Journal of Theoretical Biology, 2008, 250, 48-65.	0.8	11

GERHARD SCHLOSSER

#	Article	IF	CITATIONS
37	Development and evolution of vertebrate cranial placodes. Developmental Biology, 2014, 389, 1.	0.9	7
38	Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Frontiers in Neuroanatomy, 2021, 15, 722374.	0.9	6
39	Evolution of Sensory Development – Lessons from the Lateral Line. Brain, Behavior and Evolution, 2012, 79, 73-74.	0.9	3
40	Identification of novel cis-regulatory elements of Eya1 in Xenopus laevis using BAC recombineering. Scientific Reports, 2017, 7, 15033.	1.6	2
41	Evolution of Nerve Development in Frogs; pp. 112–128. Brain, Behavior and Evolution, 1997, 50, 112-128.	0.9	1
42	Epistasis, constraints, and coevolution. Evolution & Development, 2009, 11, 459-461.	1.1	1
43	Eya1 protein distribution during embryonic development of Xenopus laevis. Gene Expression Patterns, 2021, 42, 119213.	0.3	1
44	Evolution of Hair Cells. , 2020, , 302-336.		1
45	Evolution of Nerve Development in Frogs; pp. 74–83. Brain, Behavior and Evolution, 1997, 50, 74-83.	0.9	Ο
46	Editorial - Development and evolution of sensory cells and organs. Developmental Biology, 2017, 431, 1-2.	0.9	0