Jacek B Jasinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3016594/publications.pdf

Version: 2024-02-01

236925 223800 2,481 93 25 46 citations h-index g-index papers 96 96 96 4713 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent advances in synthesis, properties, and applications of phosphorene. Npj 2D Materials and Applications, $2017,1,.$	7.9	266
2	Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nature Communications, 2016, 7, 11857.	12.8	179
3	Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 1302.	30.8	131
4	A low-noble-metal W _{1â^'x} Ir _x O _{3â^'Î} water oxidation electrocatalyst for acidic media via rapid plasma synthesis. Energy and Environmental Science, 2017, 10, 2432-2440.	30.8	116
5	Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Materials and Applications, 2021, 5, .	7.9	113
6	Kr/Xe Separation over a Chabazite Zeolite Membrane. Journal of the American Chemical Society, 2016, 138, 9791-9794.	13.7	103
7	Carboxybetaine, sulfobetaine, and cationic block copolymer coatings: A comparison of the surface properties and antibiofouling behavior. Journal of Applied Polymer Science, 2012, 124, 2154-2170.	2.6	65
8	Inâ€Vivo Processing of Ceria Nanoparticles inside Liver: Impact on Freeâ€Radical Scavenging Activity and Oxidative Stress. ChemPlusChem, 2014, 79, 1083-1088.	2.8	65
9	Tungsten oxide-coated copper oxide nanowire arrays for enhanced activity and durability with photoelectrochemical water splitting. Journal of Materials Chemistry A, 2013, 1, 15235.	10.3	60
10	Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries. ACS Applied Materials & Electrolyte for High-Performance Solid-State Lithium Batteries.	8.0	52
11	Selectivity and Reactivity of Alkylamine- and Alkanethiolate-Stabilized Pd and PdAg Nanoparticles for Hydrogenation and Isomerization of Allyl Alcohol. ACS Catalysis, 2012, 2, 2602-2613.	11.2	48
12	Efficiency enhancement of cubic perovskite BaSnO ₃ nanostructures based dye sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 8468-8478.	2.8	48
13	Progress toward Producing n-Type CdSe Quantum Dots: Tin and Indium Doped CdSe Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 13008-13015.	3.1	47
14	Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials, 2018, 182, 114-126.	11.4	44
15	Microballs Containing Ni(0)Pd(0) Nanoparticles for Highly Selective Micellar Catalysis in Water. ACS Catalysis, 2019, 9, 7520-7526.	11.2	41
16	Scalable α-Arylation of Nitriles in Aqueous Micelles using Ultrasmall Pd Nanoparticles: Surprising Formation of Carbanions in Water. ACS Catalysis, 2020, 10, 6816-6821.	11.2	40
17	Plasma catalytic ammonia synthesis on Ni nanoparticles: The size effect. Journal of Catalysis, 2021, 393, 369-380.	6.2	34
18	Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode. Scientific Reports, 2017, 7, 39944.	3.3	33

#	Article	IF	CITATIONS
19	Catalytic Activity in Lithium-Treated Core–Shell MoO _{<i>x</i>} /MoS ₂ Nanowires. Journal of Physical Chemistry C, 2015, 119, 22908-22914.	3.1	30
20	Growth of zeolitic imidazolate framework-8 crystals from the solid–liquid interface. Journal of Materials Chemistry, 2012, 22, 7684.	6.7	28
21	Cooperative Brønsted-Lewis acid sites created by phosphotungstic acid encapsulated metal–organic frameworks for selective glucose conversion to 5-hydroxymethylfurfural. Fuel, 2022, 310, 122459.	6.4	28
22	Thin-Walled Carbon Microtubes as High-Capacity and High-Rate Anodes in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 10621-10627.	3.1	26
23	Interface stability of LiCl-rich argyrodite Li6PS5Cl with propylene carbonate boosts high-performance lithium batteries. Electrochimica Acta, 2020, 363, 137128.	5.2	26
24	Strain-induced vibrational properties of few layer black phosphorus and MoTe ₂ via Raman spectroscopy. Nanotechnology, 2020, 31, 425707.	2.6	26
25	Graphene-family nanomaterials assembled with cobalt oxides and cobalt nanoparticles as hybrid supercapacitive electrodes and enzymeless glucose detection platforms. Journal of Materials Research, 2017, 32, 301-322.	2.6	25
26	Blue to magenta tunable luminescence from LaGaO ₃ : Bi ³⁺ , Cr ³⁺ doped phosphors for field emission display applications. RSC Advances, 2017, 7, 44915-44922.	3.6	25
27	Metal–Micelle Cooperativity: Phosphine Ligand-Free Ultrasmall Palladium(II) Nanoparticles for Oxidative Mizoroki–Heck-type Couplings in Water at Room Temperature. Jacs Au, 2021, 1, 308-315.	7.9	25
28	Structural and Thermoelectric Properties of Black Arsenic–Phosphorus. ACS Applied Energy Materials, 2020, 3, 8543-8551.	5.1	24
29	Shielding Effect of Nanomicelles: Stable and Catalytically Active Oxidizable Pd(0) Nanoparticle Catalyst Compatible for Cross-Couplings of Water-Sensitive Acid Chlorides in Water. Jacs Au, 2021, 1, 1506-1513.	7.9	24
30	Organopolymer with dual chromophores and fast charge-transfer properties for sustainable photocatalysis. Nature Communications, 2019, 10, 1837.	12.8	22
31	Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	21
32	Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites. Scientific Reports, 2016, 6, 34831.	3.3	21
33	Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49614-49630.	8.0	21
34	In Situ XRD and TEM Studies of Sol-Gel-Based Synthesis of LiFePO ₄ . Crystal Growth and Design, 2016, 16, 5006-5013.	3.0	20
35	Simple synthesis of highly uniform bilayer-carbon nanocages. Carbon, 2017, 115, 617-624.	10.3	20
36	CF _x primary batteries based on fluorinated carbon nanocages. New Journal of Chemistry, 2019, 43, 12892-12895.	2.8	19

#	Article	IF	CITATIONS
37	Bilayer phosphorene under high pressure: <i>in situ</i> Raman spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 7298-7304.	2.8	19
38	Novel graphene oxide/manganese oxide nanocomposites. RSC Advances, 2013, 3, 22857.	3.6	18
39	Exfoliated WS2-Nafion Composite based Electromechanical Actuators. Scientific Reports, 2017, 7, 14599.	3.3	18
40	Electrochemical Li Intercalation in Black Phosphorus: In Situ and Ex Situ Studies. Journal of Physical Chemistry C, 2020, 124, 10710-10718.	3.1	18
41	Large area synthesis of conical carbon nanotube arrays on graphite and tungsten foil substrates. Carbon, 2011, 49, 2725-2734.	10.3	17
42	<i>In Situ</i> Transport Measurements and Band Gap Formation of Fluorinated Graphene. Journal of Physical Chemistry C, 2015, 119, 20150-20155.	3.1	17
43	Nanovalved Adsorbents for CH ₄ Storage. Nano Letters, 2016, 16, 3309-3313.	9.1	17
44	Low-Temperature and Fast Kinetics for CO2 Sorption Using Li6WO6 Nanowires. Nano Letters, 2018, 18, 4891-4899.	9.1	17
45	Thermally Stable Nanocrystalline Mesoporous Gallium Oxide Phases. European Journal of Inorganic Chemistry, 2009, 2009, 3275-3281.	2.0	16
46	Unravelling the energy transfer mechanism in bismuth co-activation of LalnO ₃ :Sm ³⁺ /Ho ³⁺ nanophosphor for color-tunable luminescence. RSC Advances, 2017, 7, 9724-9731.	3.6	16
47	Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition. Materials Research Express, 2017, 4, 055007.	1.6	15
48	Phaseâ€Transition Interlayer Enables Highâ€Performance Solidâ€State Sodium Batteries with Sulfide Solid Electrolyte. Advanced Functional Materials, 2021, 31, 2101636.	14.9	15
49	A rapid and scalable method for making mixed metal oxide alloys for enabling accelerated materials discovery. Journal of Materials Research, 2016, 31, 1596-1607.	2.6	14
50	Gas adsorption and light interaction mechanism in phosphorene-based field-effect transistors. Physical Chemistry Chemical Physics, 2020, 22, 5949-5958.	2.8	14
51	Nanochannels in Photoactive Polymeric Cu(I) Compatible for Efficient Micellar Catalysis: Sustainable Aerobic Oxidations of Alcohols in Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 2854-2860.	6.7	14
52	Electrical conductivity of Sr2-xCaxFeMnO5 (x = 0, 1, 2). Journal of Solid State Electrochemistry, 2018, 22, 2329-2338.	2.5	13
53	Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes. Materials, 2021, 14, 4134.	2.9	12
54	Phosphine Ligand-Free Bimetallic Ni(0)Pd(0) Nanoparticles as a Catalyst for Facile, General, Sustainable, and Highly Selective 1,4-Reductions in Aqueous Micelles. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6754-6761.	8.0	12

#	Article	IF	CITATIONS
55	High rate capacity retention of binder-free, tin oxide nanowire arrays using thin titania and alumina coatings. RSC Advances, 2014, 4, 3312-3317.	3.6	11
56	Methanolysis of olive oil for biodiesel synthesis over ZnO nanorods. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 583-595.	1.7	11
57	Scalable synthesis and surface stabilization of Li ₂ MnO ₃ NWs as high rate cathode materials for Li-ion batteries. RSC Advances, 2015, 5, 36906-36912.	3.6	11
58	Mesoporous TiO ₂ coating on carbon–sulfur cathode for high capacity Li–sulfur battery. RSC Advances, 2018, 8, 11622-11632.	3.6	11
59	Li interaction-induced phase transition from black to blue phosphorene. Physical Review Materials, 2021, 5, .	2.4	11
60	Photoluminescence as a probe of phosphorene properties. Npj 2D Materials and Applications, 2021, 5, .	7.9	11
61	Synthesis of Fluorine-Doped Lithium Argyrodite Solid Electrolytes for Solid-State Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11483-11492.	8.0	11
62	Chemical Vapor Transport Route toward Black Phosphorus Nanobelts and Nanoribbons. Journal of Physical Chemistry Letters, 2021, 12, 8347-8354.	4.6	10
63	Lack of a threefold rotation axis in α-Fe ₂ O ₃ and α-Cr ₂ O ₃ crystals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 203-208.	1.1	9
64	Electrooxidation, Size Stability, and Electrocatalytic Activity of 0.9â€nm Diameter Gold Nanoclusters Coated with a Weak Stabilizer. ChemElectroChem, 2020, 7, 800-809.	3.4	9
65	Thermionic emission from phosphorus (P) doped diamond nanocrystals supported by conical carbon nanotubes and ultraviolet photoelectron spectroscopy study of P-doped diamond films. Diamond and Related Materials, 2014, 50, 66-76.	3.9	8
66	The Coupled Straintronic-Photothermic Effect. Scientific Reports, 2018, 8, 64.	3.3	8
67	Layer-Dependent Hydrazine Adsorption Properties in Few-Layer WS ₂ . Journal of Physical Chemistry C, 2019, 123, 13167-13173.	3.1	8
68	Effect of Metal Nanoparticle Aggregate Structure on the Thermodynamics of Oxidative Dissolution. Langmuir, 2021, 37, 7320-7327.	3.5	8
69	Metal–Organic Framework Separator as a Polyselenide Filter for High-Performance Lithium–Selenium Batteries. ACS Applied Energy Materials, 2021, 4, 13450-13460.	5.1	8
70	ZnO ALD-Coated Microsphere-Based Sensors for Temperature Measurements. Sensors, 2020, 20, 4689.	3.8	7
71	Toward highâ€efficiency dyeâ€sensitized solar cells with a photoanode fabricated via a simple waterâ€based formulation. Progress in Photovoltaics: Research and Applications, 2015, 23, 883-891.	8.1	6
72	Unique optical properties of Eu3+ doped l-histidine hydrochloride mono hydrate single crystals from low temperature growth technique. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 176, 52-57.	3.9	6

#	Article	IF	Citations
73	Highly Active, Selective, and Recyclable Waterâ€Soluble Glutathioneâ€Stabilized Pd and Pdâ€Alloy Nanoparticle Catalysts in Biphasic Solvent. ChemCatChem, 2020, 12, 2253-2261.	3.7	6
74	Vacancy Healing as a Desorption Tool: Oxygen Triggered Removal of Stored Ammonia from NiO _{$1\hat{\epsilon}$"<i>x</i>} /MOR Validated by Experiments and Simulations. ACS Applied Energy Materials, 2020, 3, 8233-8239.	5.1	6
75	Towards continuous deoxygenation of acetic acid catalyzed by recyclable mono/bi/trimetallic zeolite catalysts. Journal of Catalysis, 2021, 401, 137-148.	6.2	6
76	Insight the process of hydrazine gas adsorption on layered WS ₂ : a first principle study. Nanotechnology, 2020, 31, 495703.	2.6	6
77	Sustainable and Benchâ€Stable Photoactive Aqueous Nanoaggregates of Cu(II) for ppm Level Cu(I) Catalysis in Water. Advanced Functional Materials, 2022, 32, .	14.9	6
78	Nanowire-Based Materials as Coke-Resistant Catalyst Supports for Dry Methane Reforming. Catalysts, 2021, 11, 175.	3.5	4
79	lodine activation: a general method for catalytic enhancement of thiolate monolayer-protected metal clusters. Nanoscale, 2020, 12, 12027-12037.	5.6	4
80	A scalable approach to topographically mediated antimicrobial surfaces based on diamond. Journal of Nanobiotechnology, 2021, 19, 458.	9.1	4
81	Nanowire architectures for iodide free dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 3543.	10.3	3
82	Liquid Phase Epitaxy of Gallium Nitride. Crystal Growth and Design, 2019, 19, 6577-6585.	3.0	3
83	Growth and influence of a porous iron oxide nanolayer on LiMn ₂ O ₄ in an aqueous rechargeable lithiumâ€ion battery. Energy Storage, 2020, 2, e143.	4.3	3
84	Direct fabrication and characterization of vertically stacked Graphene/h-BN/Graphene tunnel junctions. Nano Express, 2021, 2, 040010.	2.4	3
85	Pseudocapacitance of Microporous Carbon/Polyaniline Composites. Surface Engineering and Applied Electrochemistry, 2022, 58, 87-93.	0.8	3
86	Graphene-WS2 heterostructures by a lithography free method: their electrical properties. Nanotechnology, 2019, 30, 275704.	2.6	2
87	Vibrational Properties of Pristine and Lithiumâ€Intercalated Black Phosphorous under Highâ€Pressure. Annalen Der Physik, 2021, 533, 2100187.	2.4	2
88	Vapor-Phase Intercalation of Cesium into Black Phosphorous. Journal of Physical Chemistry C, 2021, 125, 27440-27448.	3.1	2
89	Direct Fabrication of Vertically Stacked Double Barrier Tunnel Junctions Based on Graphene and h-BN. Electronic Materials Letters, 2022, 18, 313-320.	2.2	2
90	Aluminumâ€Containing Metalâ€Organic Frameworks as Selective and Reusable Catalysts for Glucose Isomerization to Fructose. ChemCatChem, 2022, 14, .	3.7	2

#	Article	IF	CITATIONS
91	Near Infrared Tunable Gold Nanoparticles for Low Power Laser Ablation of Esophageal Adenocarcinoma. Materials Research Society Symposia Proceedings, 2012, 1416, 37.	0.1	1
92	3D carbons for energy and environmental technologies. AIP Conference Proceedings, 2018, , .	0.4	1
93	Morphologic Evaluation of Post-implanted Monofilament Polypropylene Mesh Utilizing a Novel Technique with Scanning Electron Microscopy Quantification. Surgical Technology International, 2015, 26, 169-73.	0.2	0