
S Lawrence Zipursky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/301657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design Principles of Insect and Vertebrate Visual Systems. Neuron, 2010, 66, 15-36.	3.8	488
2	Dendrite Self-Avoidance Is Controlled by Dscam. Cell, 2007, 129, 593-604.	13.5	327
3	Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature, 1991, 352, 207-212.	13.7	314
4	Alternative Splicing of Drosophila Dscam Generates Axon Guidance Receptors that Exhibit Isoform-Specific Homophilic Binding. Cell, 2004, 118, 619-633.	13.5	301
5	Chemoaffinity Revisited: Dscams, Protocadherins, and Neural Circuit Assembly. Cell, 2010, 143, 343-353.	13.5	283
6	A Vast Repertoire of Dscam Binding Specificities Arises from Modular Interactions of Variable Ig Domains. Cell, 2007, 130, 1134-1145.	13.5	210
7	Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell, 2020, 181, 536-556.	13.5	206
8	Analysis of Dscam Diversity in Regulating Axon Guidance in Drosophila Mushroom Bodies. Neuron, 2004, 43, 673-686.	3.8	197
9	Dscam diversity is essential for neuronal wiring and self-recognition. Nature, 2007, 449, 223-227.	13.7	197
10	Axonal Targeting of Olfactory Receptor Neurons in Drosophila Is Controlled by Dscam. Neuron, 2003, 37, 221-231.	3.8	194
11	Dscam-Mediated Cell Recognition Regulates Neural Circuit Formation. Annual Review of Cell and Developmental Biology, 2008, 24, 597-620.	4.0	191
12	lg Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila. Cell, 2015, 163, 1756-1769.	13.5	184
13	Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell, 1988, 52, 281-290.	13.5	170
14	Cell-type-Specific Labeling of Synapses InÂVivo through Synaptic Tagging with Recombination. Neuron, 2014, 81, 280-293.	3.8	169
15	Making Connections in the Fly Visual System. Neuron, 2002, 35, 827-841.	3.8	162
16	The Molecular Basis of Self-Avoidance. Annual Review of Neuroscience, 2013, 36, 547-568.	5.0	162
17	Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nature Neuroscience, 2006, 9, 349-355.	7.1	158
18	The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nature Neuroscience, 2003, 6, 557-563.	7.1	153

S LAWRENCE ZIPURSKY

#	Article	IF	CITATIONS
19	Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature, 2009, 461, 644-648.	13.7	147
20	Dscam2 mediates axonal tiling in the Drosophila visual system. Nature, 2007, 447, 720-724.	13.7	139
21	Transcriptional Programs of Circuit Assembly in the Drosophila Visual System. Neuron, 2020, 108, 1045-1057.e6.	3.8	115
22	A Double S Shape Provides the Structural Basis for the Extraordinary Binding Specificity of Dscam Isoforms. Cell, 2008, 134, 1007-1018.	13.5	109
23	Afferent Induction of Olfactory Glomeruli Requires N-Cadherin. Neuron, 2004, 42, 77-88.	3.8	101
24	Drosophila JAB1/CSN5 Acts in Photoreceptor Cells to Induce Glial Cells. Neuron, 2002, 33, 35-46.	3.8	88
25	The organization and evolution of the Dipteran and Hymenopteran Down syndrome cell adhesion molecule (Dscam) genes. Rna, 2004, 10, 1499-1506.	1.6	87
26	Probabilistic Splicing of Dscam1 Establishes Identity at the Level of Single Neurons. Cell, 2013, 155, 1166-1177.	13.5	84
27	Coordinate control of synaptic-layer specificity and rhodopsins in photoreceptor neurons. Nature, 2008, 456, 795-799.	13.7	77
28	Frazzled promotes growth cone attachment at the source of a Netrin gradient in the Drosophila visual system. ELife, 2016, 5, .	2.8	74
29	Local N-Cadherin Interactions Mediate Distinct Steps in the Targeting of Lamina Neurons. Neuron, 2008, 58, 34-41.	3.8	71
30	Got diversity? Wiring the fly brain with Dscam. Trends in Biochemical Sciences, 2006, 31, 581-588.	3.7	69
31	Drosophila Dscam Proteins Regulate Postsynaptic Specificity at Multiple-Contact Synapses. Neuron, 2010, 67, 761-768.	3.8	67
32	Neuron-Subtype-Specific Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition Proteins. Neuron, 2018, 100, 1385-1400.e6.	3.8	65
33	Role for Wnt Signaling in Retinal Neuropil Development: Analysis via RNA-Seq and InÂVivo Somatic CRISPR Mutagenesis. Neuron, 2018, 98, 109-126.e8.	3.8	64
34	Interactions between the Ig-Superfamily Proteins DIP-α and Dpr6/10 Regulate Assembly of Neural Circuits. Neuron, 2018, 100, 1369-1384.e6.	3.8	64
35	Multiple Interactions Control Synaptic Layer Specificity in the Drosophila Visual System. Neuron, 2013, 77, 299-310.	3.8	58
36	Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation. Neuron, 2019, 101, 894-904.e5.	3.8	55

#	Article	IF	CITATIONS
37	Dscam-mediated repulsion controls tiling and self-avoidance. Current Opinion in Neurobiology, 2008, 18, 84-89.	2.0	52
38	Modular transcriptional programs separately define axon and dendrite connectivity. ELife, 2019, 8, .	2.8	49
39	From The Cover: An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12944-12949.	3.3	47
40	Vision-dependent specification of cell types and function in the developing cortex. Cell, 2022, 185, 311-327.e24.	13.5	45
41	Dscam Proteins Direct Dendritic Targeting through Adhesion. Neuron, 2016, 89, 480-493.	3.8	40
42	Rapid Changes in the Translatome during the Conversion of Growth Cones to Synaptic Terminals. Cell Reports, 2016, 14, 1258-1271.	2.9	40
43	Sequential Axon-Derived Signals Couple Target Survival and Layer Specificity in the Drosophila Visual System. Neuron, 2014, 82, 320-333.	3.8	39
44	Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice. Neuron, 2020, 108, 111-127.e6.	3.8	37
45	Complementary Chimeric Isoforms Reveal Dscam1 Binding Specificity InÂVivo. Neuron, 2012, 74, 261-268.	3.8	32
46	Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period. Neuron, 2020, 108, 735-747.e6.	3.8	32
47	Activity regulates brain development in the fly. Current Opinion in Genetics and Development, 2020, 65, 8-13.	1.5	22
48	A global timing mechanism regulates cell-type-specific wiring programmes. Nature, 2022, 603, 112-118.	13.7	22
49	The Shape of Things to Come. Cell, 2014, 156, 13-14.	13.5	16
50	Vision is required for the formation of binocular neurons prior to the classical critical period. Current Biology, 2021, 31, 4305-4313.e5.	1.8	15
51	Affinity requirements for control of synaptic targeting and neuronal cell survival by heterophilic IgSF cell adhesion molecules. Cell Reports, 2022, 39, 110618.	2.9	9