
Jorge Padrão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/301624/publications.pdf Version: 2024-02-01

LODGE DADDÃEO

#	Article	IF	CITATIONS
1	Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids, 2016, 58, 126-140.	10.7	117
2	Laccase immobilization on bacterial nanocellulose membranes: Antimicrobial, kinetic and stability properties. Carbohydrate Polymers, 2016, 145, 1-12.	10.2	90
3	PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polymer Testing, 2014, 34, 64-71.	4.8	87
4	Activity of Specialized Biomolecules against Gram-Positive and Gram-Negative Bacteria. Antibiotics, 2020, 9, 314.	3.7	77
5	Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials (Bristol), 2013, 8, 065009.	3.3	67
6	Antimicrobial and antioxidant linen via laccase-assisted grafting. Reactive and Functional Polymers, 2011, 71, 713-720.	4.1	66
7	Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polymer Testing, 2013, 32, 995-1000.	4.8	66
8	Bacterial Cellulose As a Support for the Growth of Retinal Pigment Epithelium. Biomacromolecules, 2015, 16, 1341-1351.	5.4	57
9	Tailoring Bacteria Response by Piezoelectric Stimulation. ACS Applied Materials & Interfaces, 2019, 11, 27297-27305.	8.0	51
10	Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids and Surfaces B: Biointerfaces, 2016, 139, 1-9.	5.0	39
11	Polysaccharides and Metal Nanoparticles for Functional Textiles: A Review. Nanomaterials, 2022, 12, 1006.	4.1	37
12	Antibacterial performance of bovine lactoferrin-fish gelatine electrospun membranes. International Journal of Biological Macromolecules, 2015, 81, 608-614.	7.5	27
13	High Level Biosynthesis of a Silk-Elastin-like Protein in <i>E. coli</i> . Biomacromolecules, 2014, 15, 2701-2708.	5.4	24
14	Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic. Brain Sciences, 2021, 11, 552.	2.3	22
15	Exploiting the Sequence of Naturally Occurring Elastin: Construction, Production and Characterization of a Recombinant Thermoplastic Protein-Based Polymer. Journal of Nano Research, 2009, 6, 133-145.	0.8	19
16	Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance. Polymers, 2022, 14, 1138.	4.5	18
17	Modifying Fish Gelatin Electrospun Membranes for Biomedical Applications: Cross-Linking and Swelling Behavior. Soft Materials, 2014, 12, 247-252.	1.7	16
18	Inhibition of Escherichia Virus MS2, Surrogate of SARS-CoV-2, via Essential Oils-Loaded Electrospun Fibrous Mats: Increasing the Multifunctionality of Antivirus Protection Masks. Pharmaceutics, 2022, 14, 303.	4.5	13

Jorge Padrão

#	Article	IF	CITATIONS
19	Processing and characterization of α-elastin electrospun membranes. Applied Physics A: Materials Science and Processing, 2014, 115, 1291-1298.	2.3	12
20	Advanced Material Against Human (Including Covidâ€19) and Plant Viruses: Nanoparticles As a Feasible Strategy. Global Challenges, 2021, 5, 2000049.	3.6	12
21	BSA/HSA ratio modulates the properties of Ca2+-induced cold gelation scaffolds. International Journal of Biological Macromolecules, 2016, 89, 535-544.	7.5	9
22	Effect of bacterial nanocellulose binding on the bactericidal activity of bovine lactoferrin. Heliyon, 2020, 6, e04372.	3.2	9
23	In Situ Synthesis of Copper Nanoparticles on Dielectric Barrier Discharge Plasma-Treated Polyester Fabrics at Different Reaction pHs. ACS Applied Polymer Materials, 2022, 4, 3908-3918.	4.4	9
24	The first sequenced <i>Sphaerotilus natans</i> bacteriophage– characterization and potential to control its filamentous bacterium host. FEMS Microbiology Ecology, 2021, 97, .	2.7	8
25	Bacteria co-culture adhesion on different texturized zirconia surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104786.	3.1	7
26	A Comprehensive Analysis of the UVC LEDs' Applications and Decontamination Capability. Materials, 2022, 15, 2854.	2.9	7
27	Development of an Ultraviolet-C Irradiation Room in a Public Portuguese Hospital for Safe Re-Utilization of Personal Protective Respirators. International Journal of Environmental Research and Public Health, 2022, 19, 4854.	2.6	6
28	Aging Effect on Functionalized Silver-Based Nanocoating Braided Coronary Stents. Coatings, 2020, 10, 1234.	2.6	5
29	Testing, characterization and regulations of antimicrobial textiles. , 2021, , 485-511.		4
30	Nitrifying Soil Bacterium Nitrosomonas europaea: Operational Improvement of Standard Culture Medium. Journal of Soil Science and Plant Nutrition, 2019, 19, 270-276.	3.4	3
31	In vitro interactions between the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare fungi: morphological aspects and volatile production. Mycology, 2021, 12, 216-229.	4.4	3
32	Characterization of a natural surfactant from an essential oil from neem (Azadirachta indica A. Juss) for textile industry applications. Textile Reseach Journal, 0, , 004051752110075.	2.2	2
33	Growth optimization of marine diatom Amphora sp. by tailoring silica and nitrate concentration. Frontiers in Marine Science, 0, 5, .	2.5	1
34	Nonwoven materials and technologies for medical applications. , 2022, , 605-661.		1
35	Negative impacts of cleaning agent DEPTAL MCL® on activated sludge wastewater treatment system. Science of the Total Environment, 2022, 838, 155957.	8.0	0
36	Extraction of Cellulose-Based Polymers from Textile Wastes. Polymers, 2022, 14, 2063.	4.5	0