Kui Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3015862/publications.pdf Version: 2024-02-01

		11639	15716
307	19,482	70	125
papers	citations	h-index	g-index
315	315	315	8751
all docs	docs citations	times ranked	citing authors

Kuuluo

#	Article	IF	CITATIONS
1	A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 2011, 88, 981-1007.	5.1	2,692
2	Designing the next generation of proton-exchange membrane fuel cells. Nature, 2021, 595, 361-369.	13.7	1,012
3	Materials, technological status, and fundamentals of PEM fuel cells – A review. Materials Today, 2020, 32, 178-203.	8.3	784
4	Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 2011, 37, 221-291.	15.8	730
5	Transient analysis of polymer electrolyte fuel cells. Electrochimica Acta, 2005, 50, 1307-1315.	2.6	259
6	A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A1193.	1.3	253
7	Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review. Journal of Power Sources, 2018, 391, 120-133.	4.0	251
8	Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy and Al, 2020, 1, 100014.	5.8	228
9	Cold start of proton exchange membrane fuel cell. Progress in Energy and Combustion Science, 2018, 64, 29-61.	15.8	215
10	Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2009, 54, 6876-6891.	2.6	196
11	A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. International Journal of Heat and Mass Transfer, 2017, 115, 714-724.	2.5	186
12	Modeling two-phase flow in PEM fuel cell channels. Journal of Power Sources, 2008, 179, 603-617.	4.0	180
13	Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs. Journal of Power Sources, 2013, 233, 47-61.	4.0	176
14	Dynamics of polymer electrolyte fuel cells undergoing load changes. Electrochimica Acta, 2006, 51, 3924-3933.	2.6	170
15	Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica Acta, 2007, 52, 3965-3975.	2.6	170
16	PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development – a review. Energy and Environmental Science, 2022, 15, 2288-2328.	15.6	167
17	Characteristics of PEMFC operating at high current density with low external humidification. Energy Conversion and Management, 2017, 150, 763-774.	4.4	159
18	Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field. International Journal of Energy Research, 2018, 42, 4697-4709.	2.2	158

#	Article	IF	CITATIONS
19	Additive manufacturing for energy: A review. Applied Energy, 2021, 282, 116041.	5.1	146
20	Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model. Energy Conversion and Management, 2018, 176, 409-421.	4.4	137
21	Numerical investigation of thermal behaviors in lithium-ion battery stack discharge. Applied Energy, 2014, 132, 288-297.	5.1	136
22	Optimization design of the cathode flow channel for proton exchange membrane fuel cells. Energy Conversion and Management, 2018, 171, 1813-1821.	4.4	131
23	De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport. Advanced Materials, 2020, 32, e2001284.	11.1	130
24	Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nature Communications, 2019, 10, 842.	5.8	123
25	Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode. Journal of Power Sources, 2006, 157, 226-243.	4.0	121
26	Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability. Applied Energy, 2021, 286, 116496.	5.1	120
27	Two-Phase Transients of Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B636.	1.3	118
28	Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell. Applied Energy, 2010, 87, 2770-2777.	5.1	118
29	Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Conversion and Management, 2014, 85, 85-101.	4.4	116
30	Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2009, 34, 8171-8184.	3.8	115
31	Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model. Energy and AI, 2020, 1, 100004.	5.8	115
32	Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack. Journal of Power Sources, 2006, 154, 124-137.	4.0	114
33	Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: Forces, deformation, and detachment. I: Theoretical and numerical analyses. Journal of Power Sources, 2012, 206, 119-128.	4.0	114
34	Effective removal and transport of water in a PEM fuel cell flow channel having a hydrophilic plate. Applied Energy, 2014, 113, 116-126.	5.1	114
35	Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China. Energy, 2013, 59, 402-412.	4.5	111
36	Al-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling. Energy Conversion and Management, 2020, 205, 112460.	4.4	111

#	Article	IF	CITATIONS
37	Cold start characteristics of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 11832-11845.	3.8	107
38	Large-scale multi-phase simulation of proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer, 2019, 130, 555-563.	2.5	107
39	Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell during cold start processes. Electrochimica Acta, 2011, 56, 2967-2982.	2.6	104
40	Gas diffusion layer deformation and its effect on the transport characteristics and performance of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2013, 38, 12891-12903.	3.8	101
41	Cold start analysis of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2010, 35, 5077-5094.	3.8	100
42	On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell. Applied Energy, 2019, 233-234, 776-788.	5.1	100
43	Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model. Energy, 2019, 183, 462-476.	4.5	98
44	Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells. Journal of Power Sources, 2008, 185, 261-271.	4.0	95
45	Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and perspectives. Advances in Applied Energy, 2021, 2, 100011.	6.6	95
46	Ultra large-scale simulation of polymer electrolyte fuel cells. Journal of Power Sources, 2006, 153, 130-135.	4.0	94
47	Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery. Applied Energy, 2015, 138, 276-290.	5.1	94
48	Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China. Energy, 2020, 198, 117365.	4.5	94
49	Analysis of the Key Parameters in the Cold Start of Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B1041.	1.3	93
50	Cold start of polymer electrolyte fuel cells: Three-stage startup characterization. Electrochimica Acta, 2010, 55, 2636-2644.	2.6	93
51	Modeling Polymer Electrolyte Fuel Cells with Large Density and Velocity Changes. Journal of the Electrochemical Society, 2005, 152, A445.	1.3	92
52	Modeling of assisted cold start processes with anode catalytic hydrogen–oxygen reaction in proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2013, 38, 1004-1015.	3.8	90
53	Numerical investigations on liquid water removal from the porous gas diffusion layer by reactant flow. Applied Energy, 2010, 87, 2180-2186.	5.1	88
54	Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells. Applied Energy, 2018, 232, 443-450.	5.1	87

#	Article	IF	CITATIONS
55	Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system. Energy Conversion and Management, 2016, 126, 1106-1117.	4.4	86
56	Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field. International Journal of Hydrogen Energy, 2021, 46, 2978-2989.	3.8	86
57	Maximum power cold start mode of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2014, 39, 8390-8400.	3.8	85
58	Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation. Journal of Power Sources, 2005, 147, 148-161.	4.0	83
59	Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model. Applied Energy, 2019, 255, 113865.	5.1	83
60	A quasi-2D transient model of proton exchange membrane fuel cell with anode recirculation. Energy Conversion and Management, 2018, 171, 1463-1475.	4.4	82
61	Analysis of cold start processes in proton exchange membrane fuel cell stacks. Journal of Power Sources, 2013, 224, 99-114.	4.0	81
62	Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes. Fuel, 2011, 90, 568-582.	3.4	80
63	Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor. Applied Energy, 2017, 203, 101-114.	5.1	80
64	Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells. International Journal of Heat and Mass Transfer, 2010, 53, 1128-1138.	2.5	79
65	Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer. Energy Conversion and Management, 2019, 199, 112051.	4.4	79
66	Analysis of single- and two-phase flow characteristics of 3-D fine mesh flow field of proton exchange membrane fuel cells. Journal of Power Sources, 2019, 438, 226995.	4.0	77
67	Subfreezing operation of polymer electrolyte fuel cells: Ice formation and cell performance loss. Electrochimica Acta, 2012, 65, 127-133.	2.6	74
68	Modeling of cold start processes and performance optimization forÂproton exchange membrane fuel cell stacks. Journal of Power Sources, 2014, 247, 738-748.	4.0	74
69	Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model. Energy Conversion and Management, 2018, 164, 639-654.	4.4	74
70	Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation. Applied Energy, 2018, 225, 1-13.	5.1	74
71	Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC. International Journal of Hydrogen Energy, 2019, 44, 13807-13819.	3.8	73
72	A Threeâ€Dimensional Nonâ€isothermal Model of High Temperature Proton Exchange Membrane Fuel Cells with Phosphoric Acid Doped Polybenzimidazole Membranes. Fuel Cells, 2010, 10, 351-362.	1.5	72

#	Article	IF	CITATIONS
73	Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements – A parametric study. Applied Energy, 2012, 93, 80-89.	5.1	72
74	Numerical simulation for metal foam two-phase flow field of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2019, 44, 6229-6244.	3.8	72
75	Droplet dynamics in a polymer electrolyte fuel cell gas flow channel: Forces, Deformation and detachment. II: Comparisons of analytical solution with numerical and experimental results. Journal of Power Sources, 2012, 210, 191-197.	4.0	70
76	A comprehensive design method for segmented thermoelectric generator. Energy Conversion and Management, 2015, 106, 510-519.	4.4	70
77	Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization. Renewable Energy, 2016, 91, 166-177.	4.3	70
78	Numerical investigation of innovative 3D cathode flow channel in proton exchange membrane fuel cell. International Journal of Energy Research, 2018, 42, 3328-3338.	2.2	70
79	A dot matrix and sloping baffle cathode flow field of proton exchange membrane fuel cell. Journal of Power Sources, 2019, 434, 226741.	4.0	70
80	Effects of various operating conditions on the hydrogen absorption processes in a metal hydride tank. Applied Energy, 2012, 94, 257-269.	5.1	69
81	Effects of electrode wettabilities on liquid water behaviours in PEM fuel cell cathode. Journal of Power Sources, 2008, 175, 106-119.	4.0	68
82	Effect of vehicle driving conditions on the performance of thermoelectric generator. Energy Conversion and Management, 2015, 96, 363-376.	4.4	68
83	Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds. Journal of Power Sources, 2009, 194, 997-1006.	4.0	67
84	Three-dimensional multiphase modeling of alkaline anion exchange membrane fuel cell. International Journal of Hydrogen Energy, 2014, 39, 5981-5995.	3.8	67
85	Recent progress of gas diffusion layer in proton exchange membrane fuel cell: Two-phase flow and material properties. International Journal of Hydrogen Energy, 2021, 46, 8640-8671.	3.8	67
86	Investigation of the effect of micro-porous layer on PEM fuel cell cold start operation. Renewable Energy, 2018, 117, 125-134.	4.3	66
87	Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes. Energy and Environmental Science, 2020, 13, 297-309.	15.6	66
88	Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells. Nature Communications, 2020, 11, 1191.	5.8	65
89	Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy. Frontiers of Physics, 2021, 16, 1.	2.4	65
90	Innovative gas diffusion layers and their water removal characteristics in PEM fuel cell cathode. Journal of Power Sources, 2007, 169, 296-314.	4.0	64

#	Article	IF	CITATIONS
91	Numerical analysis of operating conditions effects on PEMFC with anode recirculation. Energy, 2019, 173, 844-856.	4.5	64
92	Porous-Media Flow Fields for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B1134.	1.3	62
93	Modeling discharge deposit formation and its effect on lithium-air battery performance. Electrochimica Acta, 2012, 75, 239-246.	2.6	62
94	Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model. International Journal of Heat and Mass Transfer, 2020, 150, 119294.	2.5	62
95	Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer, 2014, 77, 489-500.	2.5	61
96	Water management in alkaline anion exchange membrane fuel cell anode. International Journal of Hydrogen Energy, 2012, 37, 18389-18402.	3.8	60
97	Numerical simulation of two-phase cross flow in the gas diffusion layer microstructure of proton exchange membrane fuel cells. International Journal of Energy Research, 2018, 42, 802-816.	2.2	59
98	Two-phase flow and oxygen transport in the perforated gas diffusion layer of proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer, 2019, 139, 58-68.	2.5	59
99	A comprehensive and time-efficient model for determination of thermoelectric generator length and cross-section area. Energy Conversion and Management, 2016, 122, 85-94.	4.4	58
100	Two-Phase Flow Dynamics in the Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells: Volume of Fluid Modeling and Comparison with Experiment. Journal of the Electrochemical Society, 2018, 165, F613-F620.	1.3	58
101	Numerical simulation of gas liquid two-phase flow in anode channel of low-temperature fuel cells. International Journal of Hydrogen Energy, 2017, 42, 3250-3258.	3.8	57
102	Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine. Energy Conversion and Management, 2015, 101, 9-18.	4.4	56
103	Experimental and theoretical analysis of ionomer/carbon ratio effect on PEM fuel cell cold start operation. International Journal of Hydrogen Energy, 2017, 42, 12521-12530.	3.8	56
104	Lattice Boltzmann simulation of liquid water transport inside and at interface of gas diffusion and micro-porous layers of PEM fuel cells. International Journal of Heat and Mass Transfer, 2019, 140, 1074-1090.	2.5	56
105	Numerical investigation of water dynamics in a novel proton exchange membrane fuel cell flow channel. Journal of Power Sources, 2013, 222, 150-160.	4.0	55
106	Porous-Media Flow Fields for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B1124.	1.3	54
107	Challenges and opportunities in modelling of proton exchange membrane fuel cells (PEMFC). International Journal of Energy Research, 2017, 41, 1793-1797.	2.2	54
108	"3D+1D―modeling approach toward large-scale PEM fuel cell simulation and partitioned optimization study on flow field. ETransportation, 2020, 6, 100090.	6.8	51

#	Article	IF	CITATIONS
109	Analysis of Reaction Rates in the Cathode Electrode of Polymer Electrolyte Fuel Cell I. Single-Layer Electrodes. Journal of the Electrochemical Society, 2008, 155, B1289.	1.3	50
110	Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%. Applied Energy, 2015, 160, 930-936.	5.1	49
111	Two-phase flow in compressed gas diffusion layer: Finite element and volume of fluid modeling. Journal of Power Sources, 2019, 437, 226933.	4.0	49
112	Through-Plane Water Distribution in a Polymer Electrolyte Fuel Cell: Comparison of Numerical Prediction with Neutron Radiography Data. Journal of the Electrochemical Society, 2010, 157, B1878.	1.3	48
113	Multi-component multi-phase lattice Boltzmann modeling of droplet coalescence in flow channel of fuel cell. Journal of Power Sources, 2018, 393, 83-91.	4.0	48
114	Effect of Spatially-Varying GDL Properties and Land Compression on Water Distribution in PEM Fuel Cells. Journal of the Electrochemical Society, 2011, 158, B1292.	1.3	47
115	Elucidating modeling aspects of thermoelectric generator. International Journal of Heat and Mass Transfer, 2015, 85, 12-32.	2.5	47
116	3D lattice Boltzmann modeling of droplet motion in PEM fuel cell channel with realistic GDL microstructure and fluid properties. International Journal of Hydrogen Energy, 2020, 45, 12476-12488.	3.8	47
117	Analysis of Air Cathode Perfomance for Lithium-Air Batteries. Journal of the Electrochemical Society, 2013, 160, A1847-A1855.	1.3	46
118	Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell. Applied Energy, 2019, 253, 113561.	5.1	46
119	Two-dimensional multi-physics modeling of porous transport layer in polymer electrolyte membrane electrolyzer for water splitting. International Journal of Hydrogen Energy, 2020, 45, 32984-32994.	3.8	45
120	Analysis of the Reaction Rates in the Cathode Electrode of Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B403.	1.3	44
121	Two-phase flow dynamics in a micro channel with heterogeneous surfaces. International Journal of Heat and Mass Transfer, 2014, 71, 349-360.	2.5	44
122	Numerical simulation of two-phase cross flow in microstructure of gas diffusion layer with variable contact angle. International Journal of Hydrogen Energy, 2014, 39, 15772-15785.	3.8	44
123	Enhancing Hydroxide Conductivity and Stability of Anion Exchange Membrane by Blending Quaternary Ammonium Functionalized Polymers. Electrochimica Acta, 2017, 240, 486-494.	2.6	44
124	Three-dimensional simulation of water droplet movement in PEM fuel cell flow channels with hydrophilic surfaces. International Journal of Energy Research, 2011, 35, 1200-1212.	2.2	42
125	Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 25372-25387.	3.8	42
126	Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers. International Journal of Heat and Mass Transfer, 2013, 60, 134-142.	2.5	41

#	Article	IF	CITATIONS
127	Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs. Applied Energy, 2013, 104, 21-41.	5.1	41
128	Three-dimensional modeling of pressure effect on operating characteristics and performance of solid oxide fuel cell. International Journal of Hydrogen Energy, 2018, 43, 20059-20076.	3.8	41
129	An analytical model for hydrogen alkaline anion exchange membrane fuel cell. International Journal of Hydrogen Energy, 2015, 40, 3300-3312.	3.8	40
130	Current density and temperature distribution measurement and homogeneity analysis for a large-area proton exchange membrane fuel cell. Energy, 2022, 239, 121922.	4.5	40
131	Ex situ and modeling study of two-phase flow in a single channel of polymer electrolyte membrane fuel cells. Journal of Power Sources, 2011, 196, 9544-9551.	4.0	39
132	Experimental study on the effect of reactant flow arrangements on the current distribution in proton exchange membrane fuel cells. Electrochimica Acta, 2011, 56, 2591-2598.	2.6	39
133	Transient analysis of alkaline anion exchange membrane fuel cell anode. International Journal of Hydrogen Energy, 2013, 38, 6509-6525.	3.8	39
134	Optimization of porous media flow field for proton exchange membrane fuel cell using a data-driven surrogate model. Energy Conversion and Management, 2020, 226, 113513.	4.4	39
135	Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems. Energy, 2021, 222, 119910.	4.5	39
136	Numerical simulation of air flow through turbocharger compressors with dual volute design. Applied Energy, 2009, 86, 2494-2506.	5.1	38
137	Analytical modeling of liquid saturation jump effect for hydrogen alkaline anion exchange membrane fuel cell. International Journal of Heat and Mass Transfer, 2017, 112, 891-902.	2.5	38
138	Investigation of two-phase flow in the compressed gas diffusion layer microstructures. International Journal of Hydrogen Energy, 2019, 44, 26498-26516.	3.8	38
139	Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell. Applied Thermal Engineering, 2020, 172, 114959.	3.0	38
140	Numerical investigation of ejector transient characteristics for a 130â€kW PEMFC system. International Journal of Energy Research, 2020, 44, 3697-3710.	2.2	38
141	Power and efficiency factors for comprehensive evaluation of thermoelectric generator materials. International Journal of Heat and Mass Transfer, 2016, 93, 1034-1037.	2.5	37
142	Effects of needle orientation and gas velocity on water transport and removal in a modified PEMFC gas flow channel having a hydrophilic needle. International Journal of Energy Research, 2019, 43, 2538-2549.	2.2	37
143	Effects of surface wettability on two-phase flow in the compressed gas diffusion layer microstructures. International Journal of Heat and Mass Transfer, 2020, 151, 119370.	2.5	37
144	A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems. Applied Energy, 2019, 256, 113959.	5.1	36

#	Article	IF	CITATIONS
145	Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields. Energy, 2021, 217, 119313.	4.5	36
146	Catalytic hydrogen–oxygen reaction in anode and cathode for cold start of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2015, 40, 10293-10307.	3.8	35
147	Effect of wettability on water removal from the gas diffusion layer surface in a novel proton exchange membrane fuel cell flow channel. International Journal of Hydrogen Energy, 2013, 38, 12879-12885.	3.8	34
148	Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes. International Journal of Hydrogen Energy, 2014, 39, 13671-13680.	3.8	34
149	A lattice Boltzmann model for multi-component two-phase gas-liquid flow with realistic fluid properties. International Journal of Heat and Mass Transfer, 2019, 128, 536-549.	2.5	34
150	Liquid droplet detachment and dispersion in metal foam flow field of polymer electrolyte membrane fuel cell. Journal of Power Sources, 2020, 480, 229150.	4.0	34
151	Towards the digitalisation of porous energy materials: evolution of digital approaches for microstructural design. Energy and Environmental Science, 2021, 14, 2549-2576.	15.6	34
152	Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: An integrated model study. Journal of Power Sources, 2021, 516, 230660.	4.0	34
153	Probing the water content in polymer electrolyte fuel cells using neutron radiography. Electrochimica Acta, 2012, 75, 1-10.	2.6	33
154	Exergy Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Systems. International Journal of Green Energy, 2015, 12, 917-929.	2.1	33
155	Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell. Applied Energy, 2016, 183, 1272-1278.	5.1	33
156	Investigation of performance heterogeneity of PEMFC stack based on 1+1D and flow distribution models. Energy Conversion and Management, 2020, 207, 112502.	4.4	33
157	Transport properties of gas diffusion layer of proton exchange membrane fuel cells: Effects of compression. International Journal of Heat and Mass Transfer, 2021, 178, 121608.	2.5	33
158	Direct numerical simulation of low Reynolds number turbulent air-water transport in fuel cell flow channel. Science Bulletin, 2017, 62, 31-39.	4.3	31
159	A comprehensive three-dimensional model coupling channel multi-phase flow and electrochemical reactions in proton exchange membrane fuel cell. Advances in Applied Energy, 2021, 2, 100033.	6.6	31
160	A three-dimensional multi-phase numerical model of DMFC utilizing Eulerian-Eulerian model. Applied Thermal Engineering, 2018, 132, 140-153.	3.0	30
161	Design of Pt-C/Fe-N-S-C cathode dual catalyst layers for proton exchange membrane fuel cells under low humidity. Electrochimica Acta, 2019, 296, 450-457.	2.6	30
162	An experimental study on the atomization characteristics of impinging jets of power law fluid. Journal of Non-Newtonian Fluid Mechanics, 2015, 217, 49-57.	1.0	29

#	Article	IF	CITATIONS
163	Direct numerical simulation of droplet deformation in turbulent flows with different velocity profiles. Fuel, 2019, 247, 302-314.	3.4	29
164	Two-dimensional simulation of cold start processes for proton exchange membrane fuel cell with different hydrogen flow arrangements. International Journal of Hydrogen Energy, 2020, 45, 17795-17812.	3.8	29
165	Three-dimensional simulation of solid oxide fuel cell with metal foam as cathode flow distributor. International Journal of Hydrogen Energy, 2020, 45, 6897-6911.	3.8	29
166	Deep learning from three-dimensional multiphysics simulation in operational optimization and control of polymer electrolyte membrane fuel cell for maximum power. Applied Energy, 2021, 288, 116632.	5.1	29
167	An analytical model for alkaline membrane direct methanol fuel cell. International Journal of Heat and Mass Transfer, 2014, 74, 376-390.	2.5	28
168	Effect of surface dynamic wettability in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2010, 35, 9095-9103.	3.8	27
169	Modeling of passive alkaline membrane direct methanol fuel cell. Electrochimica Acta, 2015, 154, 430-446.	2.6	27
170	Water transport in the gas diffusion layer of proton exchange membrane fuel cell under vibration conditions. International Journal of Energy Research, 2020, 44, 4438-4448.	2.2	27
171	Elucidating two-phase transport in a polymer electrolyte fuel cell, Part 1: Characterizing flow regimes with a dimensionless group. Chemical Engineering Science, 2011, 66, 3557-3567.	1.9	26
172	Direct numerical simulation of two-phase turbulent flow in fuel cell flow channel. International Journal of Hydrogen Energy, 2016, 41, 3147-3152.	3.8	26
173	Experimental investigation of the effect of membrane water content on PEM fuel cell cold start. Energy Procedia, 2019, 158, 1724-1729.	1.8	26
174	Validation methodology for PEM fuel cell three-dimensional simulation. International Journal of Heat and Mass Transfer, 2022, 189, 122705.	2.5	26
175	Accelerated Numerical Test of Liquid Behavior Across Gas Diffusion Layer in Proton Exchange Membrane Fuel Cell Cathode. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	25
176	Modelling of effect of pressure on co-electrolysis of water and carbon dioxide in solid oxide electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 3456-3469.	3.8	25
177	Oxygen Transport Routes in Ionomer Film on Polyhedral Platinum Nanoparticles. ACS Nano, 2020, 14, 17487-17495.	7.3	25
178	Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell. Applied Energy, 2014, 115, 75-82.	5.1	24
179	Effects of Side Chain Length on the Structure, Oxygen Transport and Thermal Conductivity for Perfluorosulfonic Acid Membrane: Molecular Dynamics Simulation. Journal of the Electrochemical Society, 2019, 166, F511-F518.	1.3	24
180	Instability analysis of a power law liquid jet. Journal of Non-Newtonian Fluid Mechanics, 2013, 198, 10-17.	1.0	22

#	Article	IF	CITATIONS
181	An Experimental Study of Polymer Electrolyte Fuel Cell Operation at Sub-Freezing Temperatures. Journal of the Electrochemical Society, 2013, 160, F514-F521.	1.3	22
182	Three-dimension simulation of two-phase flows in a thin gas flow channel of PEM fuel cell using a volume of fluid method. International Journal of Hydrogen Energy, 2020, 45, 29730-29737.	3.8	22
183	A 1 + 1-D Multiphase Proton Exchange Membrane Fuel Cell Model for Real-Time Simulation. IEEE Transactions on Transportation Electrification, 2022, 8, 2928-2944.	5.3	21
184	Liquid transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of micro-porous layer cracks. International Journal of Hydrogen Energy, 2022, 47, 6247-6258.	3.8	21
185	Multi-layer configuration for the cathode electrode of polymer electrolyte fuel cell. Electrochimica Acta, 2010, 55, 4579-4586.	2.6	20
186	Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell. Journal of Power Sources, 2018, 382, 1-12.	4.0	20
187	Lattice Boltzmann simulation of oxygen diffusion and electrochemical reaction inside catalyst layer of PEM fuel cells. International Journal of Heat and Mass Transfer, 2019, 143, 118538.	2.5	20
188	Evolution of Microstructure, Residual Stress, and Tensile Properties of Additively Manufactured Stainless Steel Under Heat Treatments. Jom, 2020, 72, 4167-4177.	0.9	20
189	Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells. Applied Energy, 2020, 280, 116011.	5.1	20
190	An Intelligent Approach for Contact Pressure Optimization of PEM Fuel Cell Gas Diffusion Layers. Applied Sciences (Switzerland), 2020, 10, 4194.	1.3	20
191	Oxygen Permeation Resistances and Routes in Nanoscale Ionomer Thin Film on Platinum Surface. Journal of the Electrochemical Society, 2021, 168, 014511.	1.3	20
192	Pore-Scale Investigation of the Effect of Micro-Porous Layer on Water Transport in Proton Exchange Membrane Fuel Cell. Journal of the Electrochemical Society, 2020, 167, 144504.	1.3	20
193	Interlink among catalyst loading, transport and performance of proton exchange membrane fuel cells: a pore-scale study. Nanoscale Horizons, 2022, 7, 255-266.	4.1	20
194	Direct numerical simulation of near nozzle diesel jet evolution with full temporal-spatial turbulence inlet profile. Fuel, 2017, 207, 22-32.	3.4	19
195	Comfort index evaluating the water and thermal characteristics of proton exchange membrane fuel cell. Energy Conversion and Management, 2019, 185, 496-507.	4.4	19
196	Numerical investigations of vapor condensation and water transport in gas diffusion layers of PEMFC. International Journal of Heat and Mass Transfer, 2021, 177, 121543.	2.5	19
197	Investigation of mechanical vibration effect on proton exchange membrane fuel cell cold start. International Journal of Hydrogen Energy, 2020, 45, 14528-14538.	3.8	19
198	Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell. Applied Energy, 2022, 315, 119046.	5.1	19

#	Article	IF	CITATIONS
199	Mechanism of Water Content on the Electrochemical Surface Area of the Catalyst Layer in the Proton Exchange Membrane Fuel Cell. Journal of Physical Chemistry Letters, 2019, 10, 6409-6413.	2.1	18
200	Experimental investigation on the performance and durability of hydrogen AEMFC with electrochemical impedance spectroscopy. International Journal of Energy Research, 2019, 43, 8522-8535.	2.2	18
201	Photo-driven growth of a monolayer of platinum spherical-nanocrowns uniformly coated on a membrane toward fuel cell applications. Journal of Materials Chemistry A, 2020, 8, 23284-23292.	5.2	18
202	Integration of the detailed channel two-phase flow into three-dimensional multi-phase simulation of proton exchange membrane electrolyzer cell. International Journal of Green Energy, 2021, 18, 541-555.	2.1	18
203	Vapor condensation in reconstructed gas diffusion layers of proton exchange membrane fuel cell. International Journal of Energy Research, 2021, 45, 4466-4478.	2.2	17
204	Numerical study on the performance of the H-shaped air-breathing microfluidic fuel cell stack. Electrochimica Acta, 2021, 392, 139024.	2.6	17
205	Numerical investigation on the feasibility of metal foam as flow field in alkaline anion exchange membrane fuel cell. Applied Energy, 2021, 302, 117555.	5.1	17
206	Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method. Applied Energy, 2021, 303, 117659.	5.1	17
207	Investigations on heat and mass transfer in gas diffusion layers of PEMFC with a gas–liquid-solid coupled model. Applied Energy, 2022, 316, 118996.	5.1	17
208	Effect of Gas Diffusion Layer Deformation on Liquid Water Transport in Proton Exchange Membrane Fuel Cell. Engineering Applications of Computational Fluid Mechanics, 2014, 8, 26-43.	1.5	16
209	Modeling and optimization of electrode structure design for solid oxide fuel cell. International Journal of Hydrogen Energy, 2018, 43, 14648-14664.	3.8	16
210	Numerical Investigation of Liquid Water Transport Dynamics in Novel Hybrid Sinusoidal Flow Channel Designs for PEMFC. Energies, 2019, 12, 4030.	1.6	16
211	pH-differential design and operation of electrochemical and photoelectrochemical systems with bipolar membrane. Applied Energy, 2020, 268, 115053.	5.1	16
212	Modeling the membrane/CL delamination with the existence of CL crack under RH cycling conditions of PEM fuel cell. International Journal of Hydrogen Energy, 2021, 46, 8722-8735.	3.8	16
213	Elucidating the operating behavior of PEM fuel cell with nickel foam as cathode flow field. Science China Technological Sciences, 2021, 64, 1041-1056.	2.0	16
214	Development of catalytic combustion and CO2 capture and conversion technology. International Journal of Coal Science and Technology, 2021, 8, 377-382.	2.7	16
215	Green ammonia as a fuel. Science Bulletin, 2022, 67, 1530-1534.	4.3	16
216	Investigating the In-/Through-Plane Effective Diffusivities of Dry and Partially-Saturated Gas Diffusion Layers. Journal of the Electrochemical Society, 2018, 165, F986-F993.	1.3	15

#	Article	lF	CITATIONS
217	Investigating the pressure loss associated with two-phase flow in a rectangular microchannel suddenly expanding into a manifold. International Journal of Hydrogen Energy, 2018, 43, 17444-17460.	3.8	15
218	Two-phase frictional pressure drop in a thin mixed-wettability microchannel. International Journal of Heat and Mass Transfer, 2019, 128, 649-667.	2.5	15
219	Combining proton and anion exchange membrane fuel cells for enhancing the overall performance and self-humidification. Chemical Engineering Journal, 2022, 428, 131969.	6.6	15
220	A 3-D multiphase model of proton exchange membrane electrolyzer based on open-source CFD. Digital Chemical Engineering, 2021, 1, 100004.	1.2	15
221	Modeling of high temperature proton exchange membrane fuel cell start-up processes. International Journal of Hydrogen Energy, 2016, 41, 3113-3127.	3.8	14
222	Investigation of metal foam porosity and wettability on fuel cell water management by Electrochemical Impedance Spectroscopy. International Journal of Green Energy, 2021, 18, 708-719.	2.1	14
223	Numerical investigation of the influence of variable diffuser vane angles on the performance of a centrifugal compressor. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223, 1061-1070.	1.1	13
224	Transient analysis of passive direct methanol fuel cells with different operation and design parameters. International Journal of Hydrogen Energy, 2015, 40, 14978-14995.	3.8	13
225	Effect of electrode variable contact angle on the performance and transport characteristics of passive direct methanol fuel cells. International Journal of Hydrogen Energy, 2015, 40, 10568-10587.	3.8	13
226	Transient investigation of passive alkaline membrane direct methanol fuel cell. Applied Thermal Engineering, 2016, 100, 1245-1258.	3.0	13
227	Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number. Journal of Power Sources, 2016, 315, 224-235.	4.0	13
228	Transient analysis of passive vapor-feed DMFC fed with neat methanol. International Journal of Hydrogen Energy, 2017, 42, 3222-3239.	3.8	13
229	Liquid Water Transport Behavior at GDL-Channel Interface of a Wave-Like Channel. Energies, 2020, 13, 2726.	1.6	13
230	Liquid blockage and flow maldistribution of two-phase flow in two parallel thin micro-channels. Applied Thermal Engineering, 2021, 182, 116127.	3.0	13
231	Material distortion in laser-based additive manufacturing of fuel cell component: Three-dimensional numerical analysis. Additive Manufacturing, 2021, 46, 102188.	1.7	13
232	Convolutional neural network analysis of radiography images for rapid water quantification in PEM fuel cell. Applied Energy, 2022, 321, 119352.	5.1	13
233	Two-phase frictional pressure drop and water film thickness in a thin hydrophilic microchannel. International Journal of Heat and Mass Transfer, 2018, 127, 813-828.	2.5	12
234	Two-Phase Flow in Porous Electrodes of Proton Exchange Membrane Fuel Cell. Transactions of Tianjin University, 2020, 26, 197-207.	3.3	12

#	Article	IF	CITATIONS
235	Validated ensemble variable selection of laser-induced breakdown spectroscopy data for coal property analysis. Journal of Analytical Atomic Spectrometry, 2021, 36, 111-119.	1.6	12
236	Three-Dimensional Simulation of Water Management for High-Performance Proton Exchange Membrane Fuel Cell. SAE International Journal of Alternative Powertrains, 2018, 7, 233-247.	0.8	11
237	Threeâ€dimensional Modeling and Performance Optimization of Proton Conducting Solid Oxide Electrolysis Cellâ–´. Fuel Cells, 2020, 20, 701-711.	1.5	11
238	Enhancing oxygen transport in the ionomer film on platinum catalyst using ionic liquid additives. Fundamental Research, 2022, 2, 230-236.	1.6	11
239	Investigation of cell orientation effect on transient operation of passive direct methanol fuel cells. International Journal of Hydrogen Energy, 2016, 41, 6493-6507.	3.8	10
240	Effect of operating conditions on performance of proton exchange membrane fuel cell with anode recirculation. Energy Procedia, 2019, 158, 1829-1834.	1.8	10
241	Effect of anisotropy in cathode diffusion layers on direct methanol fuel cell. Applied Thermal Engineering, 2020, 165, 114589.	3.0	10
242	Multi-objective optimization of the centrifugal compressor impeller in 130 kW PEMFC through coupling SVM with NSGA -III algorithms. International Journal of Green Energy, 2021, 18, 1383-1395.	2.1	10
243	Correlating electrochemical active surface area with humidity and its application in proton exchange membrane fuel cell modeling. Energy Conversion and Management, 2022, 251, 114982.	4.4	10
244	Lithium ion transport in solid polymer electrolyte filled with alumina nanoparticles. Energy Advances, 2022, 1, 269-276.	1.4	10
245	Modeling of passive vapor feed alkaline membrane direct methanol fuel cell. Applied Thermal Engineering, 2018, 131, 920-932.	3.0	9
246	Morphology and performance evolution of anode microstructure in solid oxide fuel cell: A model-based quantitative analysis. Applications in Energy and Combustion Science, 2021, 5, 100016.	0.9	9
247	Data-driven Fault Diagnosis for PEM Fuel Cell System Using Sensor Pre-Selection Method and Artificial Neural Network Model. IEEE Transactions on Energy Conversion, 2022, , 1-1.	3.7	9
248	Numerical simulation of transport characteristics of Li-ion battery in different discharging modes. Applied Thermal Engineering, 2017, 126, 70-80.	3.0	8
249	Characteristics of Cold Start Behavior of PEM Fuel Cell with Metal Foam as Cathode Flow Field under Subfreezing Temperature. International Journal of Green Energy, 2021, 18, 1129-1146.	2.1	8
250	Reconstruction and optimization of LSCF cathode microstructure based on Kinetic Monte Carlo method and Lattice Boltzmann method. Chemical Engineering Journal, 2022, 436, 132144.	6.6	8
251	Investigation of a cost-effective strategy for polymer electrolyte membrane fuel cells: High power density operation. International Journal of Hydrogen Energy, 2021, 46, 35448-35458.	3.8	8
252	Discharge Precipitate's Impact in Li-Air Battery: Comparison of Experiment and Model Predictions. Journal of the Electrochemical Society, 2017, 164, A2283-A2289.	1.3	7

#	Article	IF	CITATIONS
253	Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells. Transactions of Tianjin University, 2023, 29, 1-13.	3.3	7
254	Capacity loss of non-aqueous Li-Air battery due to insoluble product formation: Approximate solution and experimental validation. Materials Today Energy, 2019, 14, 100360.	2.5	6
255	Charging Infrastructure Intellectualization and Future of Different Automotive Powertrains. Joule, 2020, 4, 1634-1636.	11.7	6
256	Novel structural designs of fin-tube heat exchanger for PEMFC systems based on wavy-louvered fin and vortex generator by a 3D model in OpenFOAM. International Journal of Hydrogen Energy, 2022, 47, 1820-1832.	3.8	6
257	Openâ€Source CFD Elucidating Mechanism of 3D Pillar Electrode in Improving Allâ€Solidâ€State Battery Performance. Advanced Science, 2022, 9, e2105454.	5.6	6
258	Two-Dimensional simulation of purge processes for dead-ended H ₂ /O ₂ proton exchange membrane fuel cell. International Journal of Green Energy, 2023, 20, 1266-1283.	2.1	6
259	Rapid Analysis of Platinum and Nafion Loadings Using Laser Induced Breakdown Spectroscopy. Journal of the Electrochemical Society, 2017, 164, F1294-F1300.	1.3	5
260	Molecular Dynamics Simulation of Diffusion and O ₂ Dissolution in Water Using Four Water Molecular Models. Journal of the Electrochemical Society, 2021, 168, 034520.	1.3	5
261	Polarization analysis of a micro direct methanol fuel cell stack based on Debye-Hückel ionic atmosphere theory. Energy, 2021, 222, 119907.	4.5	5
262	An Artificial Intelligence Solution for Predicting Short-Term Degradation Behaviors of Proton Exchange Membrane Fuel Cell. Applied Sciences (Switzerland), 2021, 11, 6348.	1.3	5
263	Experimental investigation of liquid water in flow field of proton exchange membrane fuel cell by combining X-ray with EIS technologies. Science China Technological Sciences, 2021, 64, 2153-2165.	2.0	5
264	Analysis of compression in uniform and non-uniform GDL microstructures on water transport. International Journal of Green Energy, 2022, 19, 1389-1403.	2.1	5
265	Effects of U-type and Z-type configurations on proton exchange membrane fuel cell stack performances considering non-uniform flow distribution phenomena. International Journal of Green Energy, 2022, 19, 1160-1169.	2.1	5
266	A modeling study of PEM fuel cells with novel catalyst monolayers under low platinum loading. Journal of Materials Chemistry A, 2022, 10, 4076-4086.	5.2	5
267	Primary breakup of power-law biofuel sprays in pressurized gaseous crossflow. Fuel, 2019, 258, 116061.	3.4	4
268	Evaluation of femtosecond laser-induced breakdown spectroscopy system as an offline coal analyzer. Scientific Reports, 2021, 11, 15968.	1.6	4
269	Porous media flow field for polymer electrolyte membrane fuel cell: Depression of gas diffusion layer intrusion, deformation, and delamination. International Journal of Energy Research, 2022, 46, 20039-20049.	2.2	4
270	Numerical investigation of design and operating parameter effects on permeability-differentiated alkaline fuel cell with metal foam flow field. Applied Thermal Engineering, 2022, 207, 118183.	3.0	4

#	Article	IF	CITATIONS
271	Global sensitivity analysis of uncertain parameters based on 2D modeling of solid oxide fuel cell. International Journal of Energy Research, 2019, 43, 8697-8715.	2.2	3
272	Ex-situ measurement of thermal conductivity and swelling of nanostructured fibrous electrodes in electrochemical energy devices. Thermal Science and Engineering Progress, 2021, 21, 100805.	1.3	3
273	Large-Scale Simulation of PEM Fuel Cell Using a "3D+1D―Model. , 0, , .		3
274	Operation characteristics of open-cathode proton exchange membrane fuel cell with different cathode flow fields. Sustainable Energy Technologies and Assessments, 2022, 49, 101681.	1.7	3
275	Modeling and Analysis of Polymer Electrolyte Fuel Cell Cold-Start. , 2010, , .		2
276	The Effect of the Air Stoichiometry on Dynamic Behavior of Local Current Density in Proton Exchange Membrane Fuel Cell. ECS Transactions, 2012, 42, 131-142.	0.3	2
277	Experimental investigation on the spray characteristics of power-law fluid in a swirl injector. Fluid Dynamics Research, 2017, 49, 035508.	0.6	2
278	Mathematical Modeling of Alkaline Anion Exchange Membrane Fuel Cells. Lecture Notes in Energy, 2018, , 169-215.	0.2	2
279	Pore-Scale Modeling of Anode Catalyst Layer Tolerance upon Hydrogen Sulfide Exposure in PEMFC. Electrocatalysis, 2021, 12, 403-414.	1.5	2
280	Modeling of Proton Exchange Membrane Fuel Cell System Considering Various Auxiliary Subsystems. Springer Proceedings in Energy, 2019, , 18-33.	0.2	2
281	Sintering kinetics and microstructure analysis of composite mixed ionic and electronic conducting electrodes. International Journal of Energy Research, 0, , .	2.2	2
282	Research on the effect of catalyst structure on an air-breathing microfluidic fuel cell with crevice. International Journal of Green Energy, 0, , 1-9.	2.1	2
283	Modeling of high-temperature polymer electrolyte membrane fuel cell for reaction spatial variation. International Journal of Heat and Mass Transfer, 2022, 195, 123209.	2.5	2
284	3D Multiphase Modeling of PEMFC with Uneven Compression of GDL. ECS Transactions, 2010, 28, 259-271.	0.3	1
285	Water Sorption and Percolation for Proton-Conducting Electrolyte Membranes for PEM Fuel Cells. Advanced Materials Research, 0, 578, 54-57.	0.3	1
286	Investigation of MPL Effect on PEFC Cold Start. ECS Transactions, 2016, 75, 77-87.	0.3	1
287	Stack-level modeling of proton exchange membrane fuel cells. , 2021, , 237-263.		1
288	Ultrahigh fuel utilization in polymer electrolyte fuel cells – Part II: A modeling study. International Journal of Green Energy, 0, , 1-9.	2.1	1

Κυι Ιιαο

#	Article	IF	CITATIONS
289	Transport phenomena in proton exchange membrane fuel cell. , 2021, , 25-65.		1
290	Porous media flow field for proton exchange membrane fuel cells. , 2022, , 315-345.		1
291	Numerical Investigation of Advanced Compressor Technologies to Meet Future Diesel Emission Regulations. , 2009, , .		0
292	3-D Multiphase Cold Start Model for PEMFCs. , 2009, , .		0
293	Cold-Start Characteristics of Polymer Electrolyte Fuel Cells: A Simplified Analysis. , 2010, , .		0
294	Numerical investigations of the flow distributions with a transient three-dimensional multi-component ejector model. IOP Conference Series: Materials Science and Engineering, 2020, 721, 012012.	0.3	0
295	Structure optimization and thermal field analysis of biogas derived methane fueled Solid Oxide Fuel Cell. IOP Conference Series: Materials Science and Engineering, 2020, 721, 012022.	0.3	0
296	Cell-level modeling of proton exchange membrane fuel cell. , 2021, , 181-235.		0
297	System-level modeling of proton exchange membrane fuel cell. , 2021, , 265-314.		0
298	Operation Characteristics of Open-Cathode Proton Exchange Membrane Fuel Cell with Different Cathode Flow Fields. SSRN Electronic Journal, 0, , .	0.4	0
299	Multiphase transport modeling. , 2021, , 121-180.		0
300	Experimental characterization and diagnostics. , 2021, , 67-120.		0
301	Liquid Behavior Across Porous Transport Layer in PEM Fuel Cell Cathode. , 2006, , .		0
302	A Study on Liquid Water Removal From Gas Diffusion Layer by Pressure Gradient. , 2009, , .		0
303	Deep Optimization of Catalyst Layer Composition via Data-Driven Machine Learning Approach. , 0, , .		0
304	Experiment Study on the Current Density Distribution of PEMFC by Segmented Cell Technology. , 2020, , .		0
305	Experimental Investigation of Proton Exchange Membrane Fuel Cell With Platinum and Nafion Along the In-Plane Direction. , 2020, , .		0
306	Study on Anode Catalyst Layer Configuration for Proton Exchange Membrane Fuel Cell with Enhanced Reversal Tolerance and Polarization Performance. Energies, 2022, 15, 2732.	1.6	0

#	Article	IF	CITATIONS
307	Experimental Optimization of Metal Foam Structural Parameters to Improve the Performance of Open-Cathode Proton Exchange Membrane Fuel Cell. , 2022, 2, .		0