
Vassilis I Zannis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3015652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification. Biochemistry, 1981, 20, 1033-1041.	2.5	552
2	Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. Journal of Molecular Medicine, 2006, 84, 276-294.	3.9	333
3	MicroRNA-370 controls the expression of MicroRNA-122 and Cpt1α and affects lipid metabolism. Journal of Lipid Research, 2010, 51, 1513-1523.	4.2	272
4	Isolation and characterization of the human apolipoprotein A-I gene Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 6147-6151.	7.1	232
5	Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages. Biochemistry, 1985, 24, 4450-4455.	2.5	194
6	Linkage of human apolipoproteins A-I and C-III genes. Nature, 1983, 304, 371-373.	27.8	182
7	An inherited polymorphism in the human apolipoprotein A-I gene locus related to the development of atherosclerosis. Nature, 1983, 301, 718-720.	27.8	147
8	Interaction of Nascent ApoE2, ApoE3, and ApoE4 Isoforms Expressed in Mammalian Cells with Amyloid Peptide β (1â^'40). Relevance to Alzheimer's Disease. Biochemistry, 1997, 36, 10571-10580.	2.5	139
9	Intracellular and extracellular processing of human apolipoprotein A-I: secreted apolipoprotein A-I isoprotein 2 is a propeptide Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 2574-2578.	7.1	138
10	Binding of High Density Lipoprotein (HDL) and Discoidal Reconstituted HDL to the HDL Receptor Scavenger Receptor Class B Type I. Journal of Biological Chemistry, 2000, 275, 21262-21271.	3.4	137
11	Isolation and characterization of cDNA clones for human apolipoprotein A-I Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 6861-6865.	7.1	129
12	ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux. Journal of Lipid Research, 2004, 45, 287-294.	4.2	124
13	The Central Helices of ApoA-I Can Promote ATP-binding Cassette Transporter A1 (ABCA1)-mediated Lipid Efflux. Journal of Biological Chemistry, 2003, 278, 6719-6730.	3.4	114
14	Structure and function of apolipoprotein A-I and high-density lipoprotein. Current Opinion in Lipidology, 2000, 11, 105-115.	2.7	110
15	Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: evidence for a small gene family Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3494-3498.	7.1	96
16	The Carboxyl-terminal Hydrophobic Residues of Apolipoprotein A-I Affect Its Rate of Phospholipid Binding and Its Association with High Density Lipoprotein. Journal of Biological Chemistry, 1997, 272, 17511-17522.	3.4	94
17	Structure, evolution, and tissue-specific synthesis of human apolipoprotein AIV. Biochemistry, 1986, 25, 3962-3970.	2.5	93
18	Cross-Linking and Lipid Efflux Properties of ApoA-I Mutants Suggest Direct Association between ApoA-I Helices and ABCA1. Biochemistry, 2004, 43, 2126-2139.	2.5	93

#	Article	IF	CITATIONS
19	Specific Mutations in ABCA1 Have Discrete Effects on ABCA1 Function and Lipid Phenotypes Both In Vivo and In Vitro. Circulation Research, 2006, 99, 389-397.	4.5	92
20	Cross-inhibition of SR-BI- and ABCA1-mediated cholesterol transport by the small molecules BLT-4 and glyburide. Journal of Lipid Research, 2004, 45, 1256-1265.	4.2	89
21	Inhibition of c-Jun-N-terminal Kinase Increases Cardiac Peroxisome Proliferator-activated Receptor α Expression and Fatty Acid Oxidation and Prevents Lipopolysaccharide-induced Heart Dysfunction. Journal of Biological Chemistry, 2011, 286, 36331-36339.	3.4	88
22	HDL Biogenesis, Remodeling, and Catabolism. Handbook of Experimental Pharmacology, 2015, 224, 53-111.	1.8	87
23	A DNA insertion in the apolipoprotein A-I gene of patients with premature atherosclerosis. Nature, 1983, 305, 823-825.	27.8	86
24	The Effects of Mutations in Helices 4 and 6 of ApoA-I on Scavenger Receptor Class B Type I (SR-BI)-mediated Cholesterol Efflux Suggest That Formation of a Productive Complex between Reconstituted High Density Lipoprotein and SR-BI Is Required for Efficient Lipid Transport. Journal of Biological Chemistry, 2002, 277, 21576-21584.	3.4	85
25	A _{2b} Adenosine Receptor Regulates Hyperlipidemia and Atherosclerosis. Circulation, 2012, 125, 354-363.	1.6	80
26	Transcriptional regulation of the apolipoprotein A-IV gene involves synergism between a proximal orphan receptor response element and a distant enhancer located in the upstream promoter region of the apolipoprotein C-III gene. Nucleic Acids Research, 1994, 22, 4689-4696.	14.5	77
27	Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT. Biochemical Journal, 2007, 403, 359-367.	3.7	76
28	Transcriptional regulatory mechanisms of the human apolipoprotein genes in vitro and in vivo. Current Opinion in Lipidology, 2001, 12, 181-207.	2.7	75
29	Genetic Mutations Affecting Human Lipoproteins, Their Receptors, and Their Enzymes. , 1993, 21, 145-319.		66
30	Inflammatory Signaling Pathways Regulating ApoE Gene Expression in Macrophages. Journal of Biological Chemistry, 2007, 282, 21776-21785.	3.4	65
31	Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Current Opinion in Lipidology, 2004, 15, 151-166.	2.7	64
32	Intracellular modification of human apolipoprotein AII (apoAII) and sites of apoAII mRNA synthesis: comparison of apoAII with apoCII and apoCIII isoproteins. Biochemistry, 1990, 29, 209-217.	2.5	59
33	Expression, secretion, and lipid-binding characterization of the N-terminal 17% of apolipoprotein B Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7313-7317.	7.1	58
34	Complex Interactions between SP1 Bound to Multiple Distal Regulatory Sites and HNF-4 Bound to the Proximal Promoter Lead to Transcriptional Activation of Liver-Specific Human APOCIII Gene. Biochemistry, 1995, 34, 10298-10309.	2.5	57
35	Domains of Apolipoprotein E Contributing to Triglyceride and Cholesterol Homeostasis in Vivo. Journal of Biological Chemistry, 2001, 276, 19778-19786.	3.4	57
36	Transcriptional regulation of the human apolipoprotein genes. Frontiers in Bioscience - Landmark, 2001, 6, d456.	3.0	55

#	Article	IF	CITATIONS
37	Cloning and expression of a rat brain alpha 2B-adrenergic receptor Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1019-1023.	7.1	53
38	Binding Specificity and Modulation of the Human ApoCIII Promoter Activity by Heterodimers of Ligand-Dependent Nuclear Receptors. Biochemistry, 1999, 38, 964-975.	2.5	53
39	Isolation and characterization of a third isoform of human hepatocyte nuclear factor 4. Gene, 1996, 173, 275-280.	2.2	52
40	Substitutions of Glutamate 110 and 111 in the Middle Helix 4 of Human Apolipoprotein A-I (apoA-I) by Alanine Affect the Structure and in Vitro Functions of apoA-I and Induce Severe Hypertriglyceridemia in apoA-I-Deficient Miceâ€. Biochemistry, 2004, 43, 10442-10457.	2.5	52
41	An indirect negative autoregulatory mechanism involved in hepatocyte nuclear factor-1 gene expression. Nucleic Acids Research, 1993, 21, 5882-5889.	14.5	51
42	[49] Genetic polymorphism in human apolipoprotein E. Methods in Enzymology, 1986, 128, 823-851.	1.0	50
43	Regulation of renin gene expression in hypertensive rats Hypertension, 1988, 12, 405-410.	2.7	50
44	Reconstituted Discoidal ApoE-Phospholipid Particles Are Ligands for the Scavenger Receptor BI. Journal of Biological Chemistry, 2002, 277, 21149-21157.	3.4	50
45	Domains of apoE Required for Binding To apoE Receptor 2 and To Phospholipids:  Implications For The Functions Of apoE in the Brain. Biochemistry, 2003, 42, 10406-10417.	2.5	50
46	Apolipoprotein E. Molecular and Cellular Biochemistry, 1982, 42, 3-20.	3.1	49
47	Mechanism of a Transcriptional Cross Talk between Transforming Growth Factor-β–regulated Smad3 and Smad4 Proteins and Orphan Nuclear Receptor Hepatocyte Nuclear Factor-4. Molecular Biology of the Cell, 2003, 14, 1279-1294.	2.1	49
48	Structure and Stability of Apolipoprotein A-I in Solution and in Discoidal High-Density Lipoprotein Probed by Double Charge Ablation and Deletion Mutation. Biochemistry, 2006, 45, 1242-1254.	2.5	48
49	Inhibition of hepatocyte nuclear factor 4 transcriptional activity by the nuclear factor κB pathway. Biochemical Journal, 2006, 398, 439-450.	3.7	46
50	High-Density Lipoprotein Attenuates Th1 and Th17 Autoimmune Responses by Modulating Dendritic Cell Maturation and Function. Journal of Immunology, 2015, 194, 4676-4687.	0.8	46
51	Probing the Lipid-Free Structure and Stability of Apolipoprotein A-I by Mutationâ€. Biochemistry, 2000, 39, 15910-15919.	2.5	45
52	SR-BI Mediates Cholesterol Efflux via Its Interactions with Lipid-Bound ApoE. Structural Mutations in SR-BI Diminish Cholesterol Efflux. Biochemistry, 2005, 44, 13132-13143.	2.5	45
53	Physical and Functional Interactions between Liver X Receptor/Retinoid X Receptor and Sp1 Modulate the Transcriptional Induction of the Human ATP Binding Cassette Transporter A1 Gene by Oxysterols and Retinoids. Biochemistry, 2007, 46, 11473-11483.	2.5	45
54	Direct Physical Interactions between HNF-4 and Sp1 Mediate Synergistic Transactivation of the Apolipoprotein CIII Promoter. Biochemistry, 2002, 41, 1217-1228.	2.5	43

#	Article	IF	CITATIONS
55	An apolipoprotein E4 fragment can promote intracellular accumulation of amyloid peptide beta 42. Journal of Neurochemistry, 2010, 115, 873-884.	3.9	43
56	Binding Specificity and Modulation of the ApoA-I Promoter Activity by Homo- and Heterodimers of Nuclear Receptors. Journal of Biological Chemistry, 1996, 271, 8402-8415.	3.4	42
57	Lipid-Free Structure and Stability of Apolipoprotein A-I:  Probing the Central Region by Mutation. Biochemistry, 2002, 41, 10529-10539.	2.5	42
58	Identification of the Molecular Target of Small Molecule Inhibitors of HDL Receptor SR-BI Activity [,] [,] . Biochemistry, 2008, 47, 460-472.	2.5	42
59	Distal Apolipoprotein C-III Regulatory Elements F to J Act as a General Modular Enhancer for Proximal Promoters That Contain Hormone Response Elements. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 222-232.	2.4	42
60	Murine mammary-derived cells secrete the N-terminal 41% of human apolipoprotein B on high density lipoprotein-sized lipoproteins containing a triacylglycerol-rich core Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 659-663.	7.1	40
61	Genetic Mutations Affecting Human Lipoprotein Metabolism. , 1985, 14, 125-215.		40
62	Factors participating in the liver-specific expression of the human apolipoprotein A-II gene and their significance for transcription. Biochemistry, 1993, 32, 9080-9093.	2.5	39
63	Transcriptional regulation of the human apolipoprotein genes. Frontiers in Bioscience - Landmark, 2001, 6, d456-504.	3.0	39
64	SMAD Proteins Transactivate the Human ApoCIII Promoter by Interacting Physically and Functionally with Hepatocyte Nuclear Factor 4. Journal of Biological Chemistry, 2000, 275, 41405-41414.	3.4	38
65	LDL receptor deficiency or apoE mutations prevent remnant clearance and induce hypertriglyceridemia in mice. Journal of Lipid Research, 2006, 47, 521-529.	4.2	38
66	Characterization of the subunit composition of HGPRTase from human erythrocytes and cultured fibroblasts. Biochemical Genetics, 1980, 18, 1-19.	1.7	37
67	Detailed Molecular Model of Apolipoprotein A-I on the Surface of High-Density Lipoproteins and Its Functional Implications. Trends in Cardiovascular Medicine, 2000, 10, 246-252.	4.9	36
68	Point Mutations in Apolipoprotein A-I Mimic the Phenotype Observed in Patients with Classical Lecithin:Cholesterol Acyltransferase Deficiencyâ€. Biochemistry, 2005, 44, 14353-14366.	2.5	36
69	Generation of a Recombinant Apolipoprotein E Variant with Improved Biological Functions. Journal of Biological Chemistry, 2005, 280, 6276-6284.	3.4	34
70	ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT. Journal of Lipid Research, 2013, 54, 107-115.	4.2	34
71	Transactivation of the Human Apolipoprotein CII Promoter by Orphan and Ligand-dependent Nuclear Receptors. Journal of Biological Chemistry, 1998, 273, 17810-17816.	3.4	33
72	Contribution of Cysteine 158, the Glycosylation Site Theonine 194, the Amino- and Carboxy-Terminal Domains of Apolipoprotein E in the Binding to Amyloid Peptide β (1â^'40). Biochemistry, 1999, 38, 8918-8925.	2.5	33

#	Article	IF	CITATIONS
73	Molecular Mechanisms of Type III Hyperlipoproteinemia:Â The Contribution of the Carboxy-Terminal Domain of ApoE Can Account for the Dyslipidemia That Is Associated with the E2/E2 Phenotypeâ€. Biochemistry, 2003, 42, 9841-9853.	2.5	33
74	Regulation of Human Apolipoprotein M Gene Expression by Orphan and Ligand-dependent Nuclear Receptors*. Journal of Biological Chemistry, 2010, 285, 30719-30730.	3.4	33
75	Mutation in <i>APOA1</i> predicts increased risk of ischaemic heart disease and total mortality without low HDL cholesterol levels. Journal of Internal Medicine, 2011, 270, 136-146.	6.0	33
76	Apolipoprotein A-I Exerts Bactericidal Activity against Yersinia enterocolitica Serotype O:3*. Journal of Biological Chemistry, 2011, 286, 38211-38219.	3.4	33
77	Ultraspiracle, a Drosophila Retinoic X Receptor α Homologue, Can Mobilize the Human Thyroid Hormone Receptor To Transactivate a Human Promoter. Biochemistry, 1997, 36, 9221-9231.	2.5	31
78	Sequence and expression of Tangier apoA-I gene. FEBS Journal, 1988, 173, 465-471.	0.2	30
79	Deletions of Helices 2 and 3 of Human ApoA-I Are Associated with Severe Dyslipidemia following Adenovirus-Mediated Gene Transfer in ApoA-I-Deficient Miceâ€. Biochemistry, 2005, 44, 4108-4117.	2.5	30
80	LCAT can Rescue the Abnormal Phenotype Produced by the Natural ApoA-I Mutations (Leu141Arg) _{Pisa} and (Leu159Arg) _{FIN} . Biochemistry, 2007, 46, 10713-10721.	2.5	30
81	Synthesis, modification, and flotation properties of rat hepatocyte apolipoproteins. Lipids and Lipid Metabolism, 1989, 1001, 90-101.	2.6	29
82	Activation of CAAT Enhancer-binding Protein δ (C/EBPδ) by Interleukin-1 Negatively Influences Apolipoprotein C-III Expression. Journal of Biological Chemistry, 1997, 272, 23578-23584.	3.4	29
83	Analysis of the structure and function relationship of human apolipoprotein E in vivo, using adenovirusâ€mediated gene transfer. FASEB Journal, 2001, 15, 1598-1600.	0.5	29
84	Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT. Biochemical Journal, 2007, 406, 167-174.	3.7	29
85	Transcriptional Regulation of the Genes Involved in Lipoprotein Transport. Hypertension, 1996, 27, 980-1008.	2.7	29
86	A Hormone Response Element in the Human Apolipoprotein CIII (ApoCIII) Enhancer Is Essential for Intestinal Expression of the ApoA-I and ApoCIII Genes and Contributes to the Hepatic Expression of the Two Linked Genes in Transgenic Mice. Journal of Biological Chemistry, 2000, 275, 30423-30431.	3.4	28
87	Specificity of Lipid Incorporation Is Determined by Sequences in the N-Terminal 37 of ApoB. Biochemistry, 2000, 39, 9737-9745.	2.5	28
88	The –700/–310 Fragment of the Apolipoprotein A-IV Gene Combined with the –890/–500 Apolipoprotein C-III Enhancer Is Sufficient to Direct a Pattern of Gene Expression Similar to That for the Endogenous Apolipoprotein A-IV Gene. Journal of Biological Chemistry, 1999, 274, 4954-4961.	3.4	27
89	The Carboxy-Terminal Region of apoA-I Is Required for the ABCA1-Dependent Formation of α-HDL But Not Preβ-HDL Particles in Vivo. Biochemistry, 2007, 46, 5697-5708.	2.5	27
90	An apolipoprotein E4 fragment affects matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 1 and cytokine levels in brain cell lines. Neuroscience, 2012, 210, 21-32.	2.3	27

#	Article	IF	CITATIONS
91	Biophysical Analysis of Progressive C-Terminal Truncations of Human Apolipoprotein E4: Insights into Secondary Structure and Unfolding Properties. Biochemistry, 2008, 47, 9071-9080.	2.5	26
92	Transactivation of the ApoCIII Promoter by ATF-2 and Repression by Members of the Jun Familyâ \in . Biochemistry, 1998, 37, 14078-14087.	2.5	25
93	In Vivo Studies of HDL Assembly and Metabolism Using Adenovirus-Mediated Transfer of ApoA-I Mutants in ApoA-I-Deficient Miceâ€. Biochemistry, 2001, 40, 13670-13680.	2.5	25
94	Discrete roles of apoAâ€I and apoE in the biogenesis of HDL species: Lessons learned from gene transfer studies in different mouse models. Annals of Medicine, 2008, 40, 14-28.	3.8	25
95	The Amino-Terminal 1â^185 Domain of ApoE Promotes the Clearance of Lipoprotein Remnants in Vivo. The Carboxy-Terminal Domain Is Required for Induction of Hyperlipidemia in Normal and ApoE-Deficient Mice. Biochemistry, 2001, 40, 6027-6035.	2.5	24
96	Carboxyl Terminus of Apolipoprotein A-I (ApoA-I) Is Necessary for the Transport of Lipid-free ApoA-I but Not Prelipidated ApoA-I Particles through Aortic Endothelial Cells. Journal of Biological Chemistry, 2011, 286, 7744-7754.	3.4	24
97	A Short Proximal Promoter and the Distal Hepatic Control Region-1 (HCR-1) Contribute to the Liver Specificity of the Human Apolipoprotein C-II Gene. Journal of Biological Chemistry, 1998, 273, 4188-4196.	3.4	23
98	ApoC-III deficiency prevents hyperlipidemia induced by apoE overexpression. Journal of Lipid Research, 2005, 46, 1466-1473.	4.2	23
99	A Dominant Negative Form of the Transcription Factor c-Jun Affects Genes That Have Opposing Effects on Lipid Homeostasis in Mice. Journal of Biological Chemistry, 2007, 282, 19556-19564.	3.4	23
100	Regulation of HDL Genes: Transcriptional, Posttranscriptional, and Posttranslational. Handbook of Experimental Pharmacology, 2015, 224, 113-179.	1.8	22
101	The N-terminal 17% of apoB binds tightly and irreversibly to emulsions modeling nascent very low density lipoproteins. Journal of Lipid Research, 2001, 42, 51-59.	4.2	22
102	HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway. Metabolism: Clinical and Experimental, 2018, 87, 36-47.	3.4	21
103	Molecular Biology of Human Apolipoproteins B and E and Associated Diseases of Lipoprotein Metabolism. Advances in Lipid Research, 1989, 23, 1-64.	1.8	21
104	Alterations of the glutamine residues of human apolipoprotein Al propeptide by in vitro mutagenesis. Characterization of the normal and mutant protein forms. Biochemistry, 1988, 27, 7428-7435.	2.5	20
105	Molecular biology of the human apolipoprotein genes: gene regulation and structure/function relationship. Current Opinion in Lipidology, 1992, 3, 96-113.	2.7	20
106	Synergism between nuclear receptors bound to specific hormone response elements of the hepatic control region-1 and the proximal apolipoprotein C-II promoter mediate apolipoprotein C-II gene regulation by bile acids and retinoids. Biochemical Journal, 2003, 372, 291-304.	3.7	20
107	The SP1 sites of the human apoCIII enhancer are essential for the expression of the apoCIII gene and contribute to the hepatic and intestinal expression of the apoA-I gene in transgenic mice. Nucleic Acids Research, 2000, 28, 4919-4929.	14.5	19
108	ApoE isoforms and carboxyl-terminal-truncated apoE4 forms affect neuronal BACE1 levels and Aβ production independently of their cholesterol efflux capacity. Biochemical Journal, 2018, 475, 1839-1859.	3.7	19

#	Article	IF	CITATIONS
109	Biophysical Analysis of Apolipoprotein E3 Variants Linked with Development of Type III Hyperlipoproteinemia. PLoS ONE, 2011, 6, e27037.	2.5	19
110	Complementary DNA derived structure of the amino-terminal domain of human apolipoprotein B and size of its messenger RNA transcript. Biochemistry, 1986, 25, 5351-5357.	2.5	18
111	DNA binding specificity and transactivation properties of SREBP-2 bound to multiple sites on the human apoA-II promoter. Nucleic Acids Research, 1999, 27, 1104-1117.	14.5	18
112	Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux. PLoS ONE, 2013, 8, e67993.	2.5	18
113	Purification and Characterization of Nuclear Factors Binding to the Negative Regulatory Element D of Human Apolipoprotein A-II Promoter: A Negative Regulatory Effect Is Reversed By GABP, an Ets-Related Protein. Biochemistry, 1994, 33, 12139-12148.	2.5	17
114	SREBP-1 Binds to Multiple Sites and Transactivates the Human ApoA-II Promoter In Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 1456-1469.	2.4	17
115	Role of Esrrg in the fibrate-mediated regulation of lipid metabolism genes in human ApoA-I transgenic mice. Pharmacogenomics Journal, 2010, 10, 165-179.	2.0	16
116	LXR Agonism Upregulates the Macrophage ABCA1/Syntrophin Protein Complex That Can Bind ApoA-I and Stabilized ABCA1 Protein, but Complex Loss Does Not Inhibit Lipid Efflux. Biochemistry, 2015, 54, 6931-6941.	2.5	16
117	Biophysical Properties of Apolipoprotein E4 Variants: Implications in Molecular Mechanisms of Correction of Hypertriglyceridemia. Biochemistry, 2008, 47, 12644-12654.	2.5	14
118	The Effect of Natural LCAT Mutations on the Biogenesis of HDL. Biochemistry, 2015, 54, 3348-3359.	2.5	14
119	[40] Intra- and extracellular modifications of apolipoproteins. Methods in Enzymology, 1986, 128, 690-712.	1.0	13
120	Contribution of the Hormone-Response Elements of the Proximal ApoA-I Promoter, ApoCIII Enhancer, and C/EBP Binding Site of the Proximal ApoA-I Promoter to the Hepatic and Intestinal Expression of the ApoA-I and ApoCIII Genes in Transgenic Mice. Biochemistry, 2004, 43, 5084-5093.	2.5	12
121	Alteration of negatively charged residues in the 89 to 99 domain of apoA-I affects lipid homeostasis and maturation of HDL. Journal of Lipid Research, 2011, 52, 1363-1372.	4.2	12
122	Natural human apoA-I mutations L141R Pisa and L159R FIN alter HDL structure and functionality and promote atherosclerosis development in mice. Atherosclerosis, 2015, 243, 77-85.	0.8	12
123	Reconstituted HDL-apoE3 promotes endothelial cell migration through ID1 and its downstream kinases ERK1/2, AKT and p38 MAPK. Metabolism: Clinical and Experimental, 2022, 127, 154954.	3.4	12
124	Significance of the hydrophobic residues 225–230 of apoA-I for the biogenesis of HDL. Journal of Lipid Research, 2013, 54, 3293-3302.	4.2	11
125	Domains of apoE4 required for the biogenesis of apoE-containing HDL. Annals of Medicine, 2011, 43, 302-311.	3.8	10
126	Molecular etiology of a dominant form of type III hyperlipoproteinemia caused by R142C substitution in apoE4. Journal of Lipid Research, 2011, 52, 45-56.	4.2	10

#	Article	IF	CITATIONS
127	High level of expression of functional human platelet α2-adrenergic receptors in a stable mouse C127 cell line. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1052, 439-445.	4.1	9
128	Secretion of lipid-poor nascent human apolopoprotein apoAI, apoCIII, and apoE by cell clones expressing the corresponding genes. Electrophoresis, 1991, 12, 273-283.	2.4	9
129	Hyperlipidemia in APOE2 transgenic mice is ameliorated by a truncated apoE variant lacking the C-terminal domain. Journal of Lipid Research, 2003, 44, 408-414.	4.2	9
130	Role of the hydrophobic and charged residues in the 218–226 region of apoA-I in the biogenesis of HDL. Journal of Lipid Research, 2013, 54, 3281-3292.	4.2	9
131	Residues Leu261, Trp264, and Phe265 Account for Apolipoprotein E-Induced Dyslipidemia and Affect the Formation of Apolipoprotein E-Containing High-Density Lipoprotein. Biochemistry, 2007, 46, 9645-9653.	2.5	8
132	Intracellular Early and Late Modifications of Human Apolipoprotein A-II. Effect of Glutamine-+1 to Leucine Substitution. Biochemistry, 1994, 33, 4056-4064.	2.5	7
133	Generation and Characterization of Two Transgenic Mouse Lines Expressing Human ApoE2 in Neurons and Glial Cellsâ€. Biochemistry, 2002, 41, 9293-9301.	2.5	6
134	Functional specificity of two hormone response elements present on the human apoA-II promoter that bind retinoid X receptor α/thyroid receptor β heterodimers for retinoids and thyroids: synergistic interactions between thyroid receptor β and upstream stimulatory factor 2a. Biochemical Journal, 2003, 376, 423-431.	3.7	6
135	Influence of Isoforms and Carboxyl-Terminal Truncations on the Capacity of Apolipoprotein E To Associate with and Activate Phospholipid Transfer Protein. Biochemistry, 2015, 54, 5856-5866.	2.5	6
136	Characterization of the subunits of purine nucleoside phosphorylase from cultured normal human fibroblasts. Biochemical Genetics, 1979, 17, 621-630.	1.7	4
137	Old and new players in the lipoprotein system. Current Opinion in Lipidology, 2000, 11, 101-103.	2.7	4
138	apoE3[K146N/R147W] acts as a dominant negative apoE form that prevents remnant clearance and inhibits the biogenesis of HDL. Journal of Lipid Research, 2014, 55, 1310-1323.	4.2	4
139	Role of apolipoproteins, ABCA1 and LCAT in the biogenesis of normal and aberrant high density lipoproteins. Journal of Biomedical Research, 2017, 31, 471.	1.6	4
140	Genes affecting atherosclerosis. Current Opinion in Lipidology, 2001, 12, 93-95.	2.7	3
141	Regulatory Gene Mutations Affecting Apolipoprotein Gene Expression: Functions and Regulatory Behavior of Known Genes May Guide Future Pharmacogenomic Approaches to Therapy. Clinical Chemistry and Laboratory Medicine, 2003, 41, 411-24.	2.3	3
142	Allele-dependent thermodynamic and structural perturbations in ApoE variants associated with the correction of dyslipidemia and formation of spherical ApoE-containing HDL particles. Atherosclerosis, 2013, 226, 385-391.	0.8	3
143	Role of Apolipoprotein E in Alzheimer's Disease. , 1998, , 179-209.		3
144	[41] Characterization of the apolipoprotein A-l—C-III gene complex. Methods in Enzymology, 1986, 128, 712-726.	1.0	2

#	Article	IF	CITATIONS
145	Apolipoprotein and lipoprotein synthesis and modifications. Current Opinion in Lipidology, 1991, 2, 149-155.	2.7	2
146	Transcriptional Regulation of the Human Apolipoprotein Genes. Advances in Experimental Medicine and Biology, 1990, 285, 1-23.	1.6	2
147	Pharmacodynamic and pharmacokinetic analysis of apoE4 [L261A, W264A, F265A, L268A, V269A], a recombinant apolipoprotein E variant with improved biological properties. Biochemical Pharmacology, 2012, 84, 1451-1458.	4.4	1
148	Regulation of ApoA-I Gene Expression and Prospects to Increase Plasma ApoA-I and HDL Levels. , 2010, , 15-24.		1
149	Using adenovirus-mediated gene transfer to study the effect of myeloperoxidase on plasma lipid levels, HDL structure and functionality in mice expressing human apoA-I forms. Biochemical and Biophysical Research Communications, 2022, 622, 108-114.	2.1	1
150	Tissue Uptake Mechanisms Involved in the Clearance of Nonâ€Protein Nanoparticles that Mimic LDL Composition: A Study with Knockout and Transgenic Mice. Lipids, 2017, 52, 991-998.	1.7	0
151	Molecular Biology of Human Apolipoprotein B and Related Diseases. Advances in Experimental Medicine and Biology, 1988, 243, 107-121.	1.6	0
152	Genetic Factors Contributing to Cardiovascular Disease that may affect Endothelial Structure and Function: The Role of Proteins involved in Lipoprotein Transport. , 1996, , 69-128.		0
153	Abstract 584: ApoE3[K146N/R147W] Acts as a Dominant Negative ApoE Form that Prevents Remnant Clearance and Inhibits the Biogenesis of HDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0