Susana C M Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3015552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chemistry, 2009, 11, 2023.	4.6	216
2	Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups. ACS Applied Materials & Interfaces, 2013, 5, 3290-3297.	4.0	211
3	Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 2010, 81, 394-401.	5.1	209
4	Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose, 2012, 19, 1425-1436.	2.4	161
5	Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chemical Engineering Journal, 2014, 256, 356-364.	6.6	142
6	Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocolloids, 2015, 46, 93-102.	5.6	139
7	A common strategy to extracting cellulose nanoentities from different plants. Industrial Crops and Products, 2014, 55, 140-148.	2.5	137
8	Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydrate Research, 2012, 348, 77-83.	1.1	136
9	Self-healing protective coatings with "green―chitosan based pre-layer reservoir of corrosion inhibitor. Journal of Materials Chemistry, 2011, 21, 4805.	6.7	134
10	Processing of α-chitin nanofibers by dynamic high pressure homogenization: Characterization and antifungal activity against A. niger. Carbohydrate Polymers, 2015, 116, 286-291.	5.1	133
11	Different routes to turn chitin into stunning nano-objects. European Polymer Journal, 2015, 68, 503-515.	2.6	120
12	Chitosan-based self-healing protective coatings doped with cerium nitrate for corrosion protection of aluminum alloy 2024. Progress in Organic Coatings, 2012, 75, 8-13.	1.9	116
13	Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 2013, 103, 143-148.	2.5	110
14	Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Composites Science and Technology, 2012, 72, 1556-1561.	3.8	107
15	Sustainable nanocomposite films based on bacterial cellulose and pullulan. Cellulose, 2012, 19, 729-737.	2.4	94
16	Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Materials and Design, 2016, 92, 846-852.	3.3	94
17	Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 140-148.	2.7	93
18	Novel materials based on chitosan and cellulose. Polymer International, 2011, 60, 875-882.	1.6	89

SUSANA C M FERNANDES

#	Article	IF	CITATIONS
19	Shape-Memory Bionanocomposites Based on Chitin Nanocrystals and Thermoplastic Polyurethane with a Highly Crystalline Soft Segment. Biomacromolecules, 2013, 14, 4475-4482.	2.6	83
20	Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydrate Polymers, 2016, 144, 41-49.	5.1	82
21	Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass – Chitin nanofillers and chitosan. Reactive and Functional Polymers, 2015, 89, 31-39.	2.0	76
22	What Is the Real Value of Chitosan's Surface Energy?. Biomacromolecules, 2008, 9, 610-614.	2.6	70
23	Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. Journal of Applied Polymer Science, 2015, 132, .	1.3	64
24	Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green Materials. ACS Applied Materials & Interfaces, 2015, 7, 16558-16564.	4.0	63
25	Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydrocolloids, 2022, 123, 107119.	5.6	61
26	Functionalized chitosan-based coatings for active corrosion protection. Surface and Coatings Technology, 2013, 226, 51-59.	2.2	59
27	Chitosan as a Smart Coating for Controlled Release of Corrosion Inhibitor 2-Mercaptobenzothiazole. ECS Electrochemistry Letters, 2013, 2, C19-C22.	1.9	59
28	The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose, 2013, 20, 1807-1818.	2.4	57
29	Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers, 2020, 12, 1002.	2.0	54
30	Antimicrobial pullulan derivative prepared by grafting with 3-aminopropyltrimethoxysilane: Characterization and ability toÂformÂtransparent films. Food Hydrocolloids, 2014, 35, 247-252.	5.6	53
31	Production of Coated Papers with Improved Properties by Using a Water-Soluble Chitosan Derivative. Industrial & Engineering Chemistry Research, 2010, 49, 6432-6438.	1.8	51
32	The bulk oxypropylation of chitin and chitosan and the characterization of the ensuing polyols. Green Chemistry, 2008, 10, 93-97.	4.6	45
33	Extraction of Nanochitin from Marine Resources and Fabrication of Polymer Nanocomposites: Recent Advances. Polymers, 2020, 12, 1664.	2.0	44
34	The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid) Films. Materials, 2017, 10, 546.	1.3	42
35	Adipose-Derived Mesenchymal Stem Cell Chondrospheroids Cultured in Hypoxia and a 3D Porous Chitosan/Chitin Nanocrystal Scaffold as a Platform for Cartilage Tissue Engineering. International Journal of Molecular Sciences, 2020, 21, 1004.	1.8	41
36	Multifunctional hybrid nanopapers based on bacterial cellulose and sol–gel synthesized titanium/vanadium oxide nanoparticles. Cellulose, 2013, 20, 1301-1311.	2.4	40

SUSANA C M FERNANDES

#	Article	IF	CITATIONS
37	Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films. BioMed Research International, 2013, 2013, 1-14.	0.9	38
38	Conductive Photoswitchable Vanadium Oxide Nanopaper based on Bacterial Cellulose. ChemSusChem, 2012, 5, 2323-2327.	3.6	37
39	Functional Chitosan Derivative and Chitin as Decolorization Materials for Methylene Blue and Methyl Orange from Aqueous Solution. Materials, 2019, 12, 361.	1.3	35
40	Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung, 2013, 67, 603-612.	0.9	31
41	A study of the distribution of chitosan onto and within a paper sheet using a fluorescent chitosan derivative. Carbohydrate Polymers, 2009, 78, 760-766.	5.1	29
42	Chitin Nanoforms Provide Mechanical and Topological Cues to Support Growth of Human Adipose Stem Cells in Chitosan Matrices. Biomacromolecules, 2018, 19, 3000-3012.	2.6	27
43	Microwave-Assisted Extraction of Curcuma longa L. Oil: Optimization, Chemical Structure and Composition, Antioxidant Activity and Comparison with Conventional Soxhlet Extraction. Molecules, 2021, 26, 1516.	1.7	26
44	Self-standing chitosan films as dielectrics in organic thin-film transistors. EXPRESS Polymer Letters, 2013, 7, 960-965.	1.1	22
45	Optically Active Multilayer Films Based on Chitosan and an Azopolymer. Biomacromolecules, 2014, 15, 1399-1407.	2.6	19
46	Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composites Science and Technology, 2018, 167, 323-330.	3.8	19
47	Using α-chitin nanocrystals to improve the final properties of poly (vinyl alcohol) films with Origanum vulgare essential oil. Polymer Degradation and Stability, 2020, 179, 109227.	2.7	18
48	Eco-friendly isolation and characterization of nanochitin from different origins by microwave irradiation: Optimization using response surface methodology. International Journal of Biological Macromolecules, 2021, 186, 218-226.	3.6	17
49	Advances in Nanostructured Cellulose-based Biomaterials. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	16
50	Progresses and future prospects in biodegradation of marine biopolymers and emerging biopolymer-based materials for sustainable marine ecosystems. Green Chemistry, 2022, 24, 1762-1779.	4.6	14
51	Gas Barrier, Rheological and Mechanical Properties of Immiscible Natural Rubber/Acrylonitrile Butadiene Rubber/Organoclay (NR/NBR/Organoclay) Blend Nanocomposites. Materials, 2020, 13, 2654.	1.3	13
52	Microwave assisted synthesis of poly (<i>N</i> -vinylimidazole) grafted chitosan as an effective adsorbent for mercury (II) removal from aqueous solution: Equilibrium, kinetic, thermodynamics and regeneration studies. Journal of Dispersion Science and Technology, 2020, 41, 828-840.	1.3	12
53	Untargeted Analysis for Mycosporines and Mycosporine-Like Amino Acids by Hydrophilic Interaction Liquid Chromatography (HILIC)—Electrospray Orbitrap MS2/MS3. Antioxidants, 2020, 9, 1185. 	2.2	12
54	Green in the deep blue: deep eutectic solvents as versatile systems for the processing of marine biomass. Green Chemistry Letters and Reviews, 2022, 15, 383-404.	2.1	9

SUSANA C M FERNANDES

#	Article	IF	CITATIONS
55	Effect of Deterpenated Origanum majorana L. Essential Oil on the Physicochemical and Biological Properties of Chitosan/l²-Chitin Nanofibers Nanocomposite Films. Polymers, 2021, 13, 1507.	2.0	8
56	Valorization of the Red Algae Gelidium sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches. Marine Drugs, 2021, 19, 574.	2.2	8
57	Photoresponsive Multilayer Films of Chitosan and an Azopolymer. Journal of Renewable Materials, 2015, 3, 49-55.	1.1	2
58	Contributions of Women in Recent Research on Biopolymer Science. Polymers, 2022, 14, 1420.	2.0	2
59	Chitosan-based materials as templates for essential oils. , 2020, , 689-720.		1
60	Chapter 1 Bio-Based New Materials for Packaging Applications. , 2016, , 1-18.		0
61	Nanostructured composite materials reinforced with nature-based cellulose nanofibres. WIT Transactions on Ecology and the Environment, 2012, , .	0.0	0
62	Evaluation of the Preservation and Digestion of Seal Meat Processed with Heating and Antioxidant Seal Meat Hydrolysates. Marine Drugs, 2022, 20, 204.	2.2	0