
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3015430/publications.pdf Version: 2024-02-01

HWE RALIMANN

#	Article	lF	CITATIONS
1	Electric-Acoustic Stimulation of the Auditory System: A Review of the First Decade. Audiology and Neuro-Otology, 2011, 16, 1-30.	1.3	166
2	Localization ability with bimodal hearing aids and bilateral cochlear implants. Journal of the Acoustical Society of America, 2004, 116, 1698-1709.	1.1	130
3	A new electrode for residual hearing preservation in cochlear implantation: first clinical results. Acta Oto-Laryngologica, 2009, 129, 372-379.	0.9	123
4	Towards a Unified Testing Framework for Single-Sided Deafness Studies: A Consensus Paper. Audiology and Neuro-Otology, 2016, 21, 391-398.	1.3	110
5	Evaluation of Performance with the COMBI 40 Cochlear Implant in Adults: A Multicentric Clinical Study. Orl, 1997, 59, 23-35.	1.1	102
6	Combined electric acoustic stimulation with the PULSARCI ¹⁰⁰ implant system using the FLEX ^{EAS} electrode array. Acta Oto-Laryngologica, 2011, 131, 585-595.	0.9	83
7	Speech Perception With Combined Electric-Acoustic Stimulation and Bilateral Cochlear Implants in a Multisource Noise Field. Ear and Hearing, 2013, 34, 324-332.	2.1	80
8	Long-term Hearing Preservation Outcomes After Cochlear Implantation for Electric-Acoustic Stimulation. Otology and Neurotology, 2016, 37, e353-e359.	1.3	66
9	The cochlear implant electrode–pitch function. Hearing Research, 2006, 213, 34-42.	2.0	63
10	Hearing Preservation After Complete Cochlear Coverage in Cochlear Implantation With the Free-Fitting FLEXSOFT Electrode Carrier. Otology and Neurotology, 2011, 32, 973-979.	1.3	59
11	Pulse rate discrimination with deeply inserted electrode arrays. Hearing Research, 2004, 196, 49-57.	2.0	45
12	Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness. Hearing Research, 2016, 339, 94-103.	2.0	43
13	High prevalence of hearing disorders at the Special Olympics indicate need to screen persons with intellectual disability. Journal of Intellectual Disability Research, 2008, 52, 520-528.	2.0	42
14	Recording and analysis of electrically evoked compound action potentials (ECAPs) with MED-EL cochlear implants and different artifact reduction strategies in Matlab. Journal of Neuroscience Methods, 2010, 191, 66-74.	2.5	38
15	Single-Sided Deafness: Impact of Cochlear Implantation on Speech Perception in Complex Noise and on Auditory Localization Accuracy. Otology and Neurotology, 2017, 38, e563-e569.	1.3	38
16	Comparison of the TEMPO+ Ear-Level Speech Processor and the CIS PRO+ Body-Worn Processor in Adult MED-EL Cochlear Implant Users. Orl, 2001, 63, 31-40.	1.1	37
17	Improvement of speech perception in quiet and in noise without decreasing localization abilities with the bone conduction device Bonebridge. European Archives of Oto-Rhino-Laryngology, 2017, 274, 2107-2115.	1.6	37
18	Labyrinth Dysfunction 8 Months After Cochlear Implantation: A Case Report. Otology and Neurotology, 2004, 25, 727-729.	1.3	32

#	Article	IF	CITATIONS
19	Preventing Facial Nerve Stimulation by Triphasic Pulse Stimulation in Cochlear Implant Users: Intraoperative Recordings. Otology and Neurotology, 2017, 38, e438-e444.	1.3	31
20	A New Combined Speech Processor for Electric and Acoustic Stimulation – Eight Months Experience. Orl, 2008, 70, 359-365.	1.1	30
21	Management of Cochlear Implant Electrode Migration. Otology and Neurotology, 2016, 37, e341-e348.	1.3	30
22	Evaluation of an Electrode Prototype for Atraumatic Cochlear Implantation in Hearing Preservation Candidates. Otology and Neurotology, 2011, 32, 419-423.	1.3	29
23	Recording of electrically evoked auditory brainstem responses (E-ABR) with an integrated stimulus generator in Matlab. Journal of Neuroscience Methods, 2008, 173, 306-314.	2.5	27
24	Recording of electrically evoked auditory brainstem responses after electrical stimulation with biphasic, triphasic and precision triphasic pulses. Hearing Research, 2010, 259, 75-85.	2.0	26
25	The Underlying Mechanism of Preventing Facial Nerve Stimulation by Triphasic Pulse Stimulation in Cochlear Implant Users Assessed With Objective Measure. Otology and Neurotology, 2016, 37, 1231-1237.	1.3	26
26	Incidence for Tip Foldover During Cochlear Implantation. Otology and Neurotology, 2018, 39, 1115-1121.	1.3	25
27	Pitch Ranking with Deeply Inserted Electrode Arrays. Ear and Hearing, 2004, 25, 275-283.	2.1	23
28	Speech audiometry in quiet with the Oldenburg Sentence Test for Children. International Journal of Audiology, 2012, 51, 157-163.	1.7	23
29	A method for determining precise electrical hearing thresholds in cochlear implant users. International Journal of Audiology, 2018, 57, 502-509.	1.7	23
30	Minimal Reporting Standards for Active Middle Ear Hearing Implants. Audiology and Neuro-Otology, 2018, 23, 105-115.	1.3	23
31	Hearing Preservation Outcomes After Cochlear Implantation Depending on the Angle of Insertion: Indication for Electric or Electric-Acoustic Stimulation. Otology and Neurotology, 2018, 39, 834-841.	1.3	22
32	Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss. Otology and Neurotology, 2022, 43, 513-529.	1.3	22
33	Hearing Preservation and Improved Speech Perception With a Flexible 28-mm Electrode. Otology and Neurotology, 2015, 36, 34-42.	1.3	21
34	Analysis of Ceiling Effects Occurring with Speech Recognition Tests in Adult Cochlear-Implanted Patients. Orl, 2004, 66, 130-135.	1.1	20
35	Comparison of Musical Activities of Cochlear Implant Users with Different Speech-Coding Strategies. Ear and Hearing, 2007, 28, 49S-51S.	2.1	20
36	Effectiveness of Directional Microphones in Bilateral/Bimodal Cochlear Implant Users—Impact of Spatial and Temporal Noise Characteristics. Otology and Neurotology, 2017, 38, e551-e557.	1.3	20

#	Article	IF	CITATIONS
37	Early Fitting in Cochlear Implantation: Benefits and Limits. Otology and Neurotology, 2018, 39, e250-e256.	1.3	19
38	Acceptance and Fitting of the DUET Device – A Combined Speech Processor for Electric Acoustic Stimulation. Advances in Oto-Rhino-Laryngology, 2009, 67, 81-87.	1.6	18
39	Pitch Matching Psychometrics in Electric Acoustic Stimulation. Ear and Hearing, 2011, 32, 656-662.	2.1	18
40	Cochlear Implant Therapy Improves the Quality of Life in Older Patients—A Prospective Evaluation Study. Otology and Neurotology, 2020, 41, 1214-1221.	1.3	18
41	Impact of Hearing Rehabilitation Using Cochlear Implants on Cognitive Function in Older Patients. Otology and Neurotology, 2021, 42, 1136-1141.	1.3	18
42	Effects of electrical pulse polarity shape on intra cochlear neural responses in humans: Triphasic pulses with cathodic second phase. Hearing Research, 2013, 306, 123-130.	2.0	17
43	Speech Perception With Combined Electric-Acoustic Stimulation. Ear and Hearing, 2015, 36, e314-e325.	2.1	16
44	German Oldenburg Sentence Test for Children: A Useful Speech Audiometry Tool for Hearing-Impaired Children at Kindergarten and School Age. Folia Phoniatrica Et Logopaedica, 2012, 64, 227-233.	1.1	15
45	A case of bilateral cochlear implantation in single-sided untreated acoustic neurinoma. Acta Oto-Laryngologica, 2009, 129, 694-696.	0.9	14
46	Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: I. Amplitude growth functions. Journal of Neuroscience Methods, 2012, 205, 202-211.	2.5	13
47	New parallel stimulation strategies revisited: Effect of synchronous multi electrode stimulation on rate discrimination in cochlear implant users. Cochlear Implants International, 2013, 14, 142-149.	1.2	13
48	Pitch Matching in Cochlear Implant Users With Single-Sided Deafness: Effects of Electrode Position and Acoustic Stimulus Type. Frontiers in Neuroscience, 2019, 13, 1119.	2.8	13
49	Outcomes for a clinically representative cohort of hearing-impaired adults using the Nucleus® CI532 cochlear implant. European Archives of Oto-Rhino-Laryngology, 2020, 277, 1625-1635.	1.6	12
50	Impact of a Moving Noise Masker on Speech Perception in Cochlear Implant Users. PLoS ONE, 2015, 10, e0126133.	2.5	12
51	Impedance audiometry in infants with a cleft palate: The standard 226-Hz probe tone has no predictive value for the middle ear condition. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 586-590.	1.0	11
52	Long-Term Follow-Up of Early Cochlear Implant Device Activation. Audiology and Neuro-Otology, 2021, 26, 327-337.	1.3	11
53	Cochlear Reimplantation after Surgery for Electric-Acoustic Stimulation. Orl, 2009, 71, 172-178.	1.1	10
54	Age Differences in Speech Perception in Noise and Sound Localization in Individuals With Subjective Normal Hearing. Frontiers in Psychology, 2022, 13, 845285.	2.1	10

#	Article	IF	CITATIONS
55	Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: II. Recovery functions. Journal of Neuroscience Methods, 2012, 205, 212-220.	2.5	9
56	Evaluation of a Transimpedance Matrix Algorithm to Detect Anomalous Cochlear Implant Electrode Position. Audiology and Neuro-Otology, 2022, 27, 347-355.	1.3	9
57	Long-term effects on the quality of life following cochlear implant treatment in older patients. European Archives of Oto-Rhino-Laryngology, 2022, 279, 5135-5144.	1.6	8
58	Assessment of the Subjective Benefit of Electric Acoustic Stimulation with the Abbreviated Profile of Hearing Aid Benefit. Orl, 2011, 73, 321-329.	1.1	7
59	Evaluation of an artifact reduction strategy for electrically evoked auditory steady-state responses: Simulations and measurements. Journal of Neuroscience Methods, 2018, 296, 57-68.	2.5	7
60	Speech perception in noise: Impact of directional microphones in users of combined electric-acoustic stimulation. PLoS ONE, 2019, 14, e0213251.	2.5	6
61	Recording and online analysis of auditory steady state responses (ASSR) in Matlab. Journal of Neuroscience Methods, 2010, 187, 105-113.	2.5	5
62	Sensitivity to interaural time differences and localization accuracy in cochlear implant users with combined electric-acoustic stimulation. PLoS ONE, 2020, 15, e0241015.	2.5	5
63	Device profile of the MED-EL cochlear implant system for hearing loss: overview of its safety and efficacy. Expert Review of Medical Devices, 2020, 17, 599-614.	2.8	4
64	Band-Limited Chirp-Evoked Compound Action Potential in Guinea Pig: Comprehensive Neural Measure for Cochlear Implantation Monitoring. Ear and Hearing, 2021, 42, 142-162.	2.1	4
65	Psychometric function of jittered rate pitch discrimination. Hearing Research, 2014, 313, 47-54.	2.0	3
66	Noise Exposure of Teachers in Nursery Schools—Evaluation of Measures for Noise Reduction When Dropping DUPLO Toy Bricks into Storage Cases by Sound Analyses. International Journal of Environmental Research and Public Health, 2016, 13, 677.	2.6	3
67	Impact of Reverberation on Speech Perception and Sound Localization Accuracy in Cochlear Implant Users With Single-Sided Deafness. Otology and Neurotology, 2022, 43, e30-e37.	1.3	3
68	Interleaved Acoustic Environments: Impact of an Auditory Scene Classification Procedure on Speech Perception in Cochlear Implant Users. Trends in Hearing, 2021, 25, 233121652110141.	1.3	2
69	Vertigo Associated With Cochlear Implant Surgery: Correlation With Vertigo Diagnostic Result, Electrode Carrier, and Insertion Angle. Frontiers in Neurology, 2021, 12, 663386.	2.4	2
70	A setup for simultaneous measurement of electrophysiological and psychometric temporal encoding in the auditory system. Journal of Neuroscience Methods, 2015, 249, 50-58.	2.5	1
71	Impact of Microphone Configuration on Speech Perception of Cochlear Implant Users in Traffic Noise. Otology and Neurotology, 2019, 40, e198-e205.	1.3	1

0

#	Article	IF	CITATIONS
73	3.4 Andere Hörimplantate. , 2018, , .		1
74	3.3 Elektrisch-akustische Stimulation am gleichen Ohr. , 2018, , .		0
75	1.6 Hörstörungen. , 2018, , .		0
76	1.5 Grundlagen der Sprachwahrnehmung. , 2018, , .		0
77	4.1 Konventionelle Hörsysteme. , 2018, , .		0
78	2.6 Verifikation und Validierung von H $ ilde{A}\P$ rsystemversorgungen. , 2018, , .		0
79	3.5 Aspekte der Rehabilitation mit H $ ilde{A}$ $ extsf{q}$ rimplantaten. , 2018, , .		0
80	3.2 Bimodale Versorgung. , 2018, , .		0
81	4.2 Cochlea-Implantat und elektrisch-akustische Stimulationssysteme. , 2018, , .		0
82	4.4 Indikationskriterien und technischer Fortschritt. , 2018, , .		0
83	2.4 Mögliche zukünftige Lösungen. , 2018, , .		0
84	2.1 Konventionelle H̦rsysteme: H̦rger̾. , 2018, , .		0
85	3.1 Cochlea-Implantate. , 2018, , .		0

86 2.3 Aktuelle AnsÄtze zur Weiterentwicklung der HĶrgerÄtefunktionalitÄt , 2018, , .