Min Chul Suh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3015382/publications.pdf Version: 2024-02-01

Мім Сніц Suh

#	Article	IF	CITATIONS
1	Highly Efficient Red Phosphorescent Dopants in Organic Lightâ€Emitting Devices. Advanced Materials, 2011, 23, 2721-2726.	11.1	213
2	Carrier trapping and efficient recombination of electrophosphorescent device with stepwise doping profile. Applied Physics Letters, 2005, 86, 133505.	1.5	87
3	Concentration Quenching Behavior of Thermally Activated Delayed Fluorescence in a Solid Film. Journal of Physical Chemistry C, 2017, 121, 13986-13997.	1.5	81
4	Enhanced Luminance of Blue Light-Emitting Polymers by Blending with Hole-Transporting Materials. Advanced Materials, 2003, 15, 1254-1258.	11.1	71
5	An Efficient, Modular Synthetic Route to Oligomers Based on Zirconocene Coupling: Properties for Phenylene–Thiophene-1-Oxide and Phenylene–Thiophene-1,1-Dioxide Chains. Angewandte Chemie - International Edition, 2000, 39, 2870-2873.	7.2	68
6	Regioselective Coupling of Pentafluorophenyl Substituted Alkynes:Â Mechanistic Insight into the Zirconocene Coupling of Alkynes and a Facile Route to Conjugated Polymers Bearing Electron-Withdrawing Pentafluorophenyl Substituents. Journal of the American Chemical Society, 2003, 125, 4199-4211.	6.6	67
7	Small single–triplet energy gap bipolar host materials for phosphorescent blue and white organic light emitting diodes. Journal of Materials Chemistry C, 2013, 1, 5008.	2.7	53
8	Efficient deep blue fluorescent emitter showing high external quantum efficiency. Dyes and Pigments, 2015, 120, 200-207.	2.0	53
9	A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure. Nanoscale, 2016, 8, 8575-8582.	2.8	53
10	High current conduction with high mobility by non-radiative charge recombination interfaces in organic semiconductor devices. Organic Electronics, 2012, 13, 939-944.	1.4	52
11	Simple fabrication of a three-dimensional porous polymer film as a diffuser for organic light emitting diodes. Nanoscale, 2014, 6, 14446-14452.	2.8	45
12	Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells. Applied Physics Letters, 2011, 99, .	1.5	44
13	Electrochemical Insertion of Lithium into Polyacrylonitrileâ€Based Disordered Carbons. Journal of the Electrochemical Society, 1997, 144, 4279-4284.	1.3	39
14	Impact of Interface Mixing on the Performance of Solution Processed Organic Light Emitting Diodes—Impedance and Ultraviolet Photoelectron Spectroscopy Study. ACS Applied Materials & Interfaces, 2017, 9, 22748-22756.	4.0	38
15	Low voltage top-emitting organic light emitting devices by using 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile. Synthetic Metals, 2012, 162, 402-405.	2.1	37
16	Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure. Scientific Reports, 2015, 5, 15903.	1.6	37
17	Enhancement of Reverse Intersystem Crossing in Chargeâ€Transfer Molecule through Internal Heavy Atom Effect. Advanced Functional Materials, 2021, 31, 2104646.	7.8	37
18	A cross-linkable hole transport material having improved mobility through a semi-interpenetrating polymer network approach for solution-processed green PHOLEDs. Journal of Materials Chemistry C, 2018, 6, 7750-7758.	2.7	36

Min Chul Suh

#	Article	IF	CITATIONS
19	Thermally-stable 2,3-diphenylated benzotiophene containing host materials for red phosphorescent organic light-emitting diodes. Dyes and Pigments, 2014, 111, 116-123.	2.0	34
20	Synthesis of Soluble Host Materials for Highly Efficient Red Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 18256-18265.	4.0	31
21	Highly Efficient Solution-Processed Organic Light-Emitting Diodes Containing a New Cross-linkable Hole Transport Material Blended with Commercial Hole Transport Materials. ACS Applied Materials & Interfaces, 2021, 13, 21954-21963.	4.0	30
22	Suppression of the viewing angle dependence by introduction of nanoporous diffuser film on blue OLEDs with strong microcavity effect. Organic Electronics, 2016, 28, 31-38.	1.4	28
23	Bipolar host materials with carbazole and dipyridylamine groups showing high triplet energy for blue phosphorescent organic light emitting diodes. Dyes and Pigments, 2017, 141, 217-224.	2.0	28
24	Improved blue light-emitting polymeric device by the tuning of drift mobility and charge balance. Applied Physics Letters, 2004, 84, 1777-1779.	1.5	22
25	Highly efficient green phosphorescent organic light emitting diodes with simple structure. Organic Electronics, 2013, 14, 2198-2203.	1.4	22
26	Thermally Crossâ€Linkable Hole Transport Polymers for Solutionâ€Based Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2014, 35, 807-812.	2.0	21
27	Curing temperature reduction and performance improvement of solution-processable hole-transporting materials for phosphorescent OLEDs by manipulation of cross-linking functionalities and core structures. RSC Advances, 2016, 6, 33212-33220.	1.7	21
28	Triphenylene containing host materials with high thermal stability for green phosphorescent organic light emitting diode. Dyes and Pigments, 2014, 101, 221-228.	2.0	20
29	Highly efficient soluble materials for blue phosphorescent organic light–emitting diode. Dyes and Pigments, 2012, 95, 221-228.	2.0	19
30	A study on full color organic light emitting diodes with blue common layer under the patterned emission layer. Organic Electronics, 2014, 15, 2932-2941.	1.4	19
31	Preparation and Characterization of Nitrogen and Oxygen Containing Graphite-like Pyropolymers from 5-(2-Pyridyl)-2,4-pentadiyn-1-ol. Chemistry of Materials, 1997, 9, 192-200.	3.2	18
32	High efficiency AMOLED using hybrid of small molecule and polymer materials patterned by laser transfer. Journal of Information Display, 2003, 4, 1-5.	2.1	17
33	Molecularly doped electrophosphorescent emitters for solution processed and laser patterned devices. Thin Solid Films, 2007, 515, 4011-4015.	0.8	17
34	Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component. Organic Electronics, 2016, 38, 316-322.	1.4	17
35	Photophysical Properties of Thermally Activated Delayed Fluorescent Materials upon Distortion of Central Axis of Donor Moiety. Journal of Physical Chemistry C, 2018, 122, 28576-28587.	1.5	17
36	Synthesis and properties of new Si?H-containing polymers. Journal of Polymer Science Part A, 1998, 36, 2275-2282.	2.5	16

MIN CHUL SUH

#	Article	IF	CITATIONS
37	Constant Bias Stress Effects on Threshold Voltage of Pentacene Thin-Film Transistors Employing Polyvinylphenol Gate Dielectric. IEEE Electron Device Letters, 2007, 28, 874-876.	2.2	16
38	Improvement of viewing angle dependence of the white organic light emitting diodes with tandem structure by introduction of nanoporous polymer films. Organic Electronics, 2017, 40, 88-96.	1.4	16
39	Enhanced device performances of a new inverted top-emitting OLEDs with relatively thick Ag electrode. Optics Express, 2018, 26, 4979.	1.7	16
40	Mitigating the Trade-off between Triplet Harvesting and Roll-off by Opening a Dexter-Type Channel in OLEDs. Journal of Physical Chemistry C, 2019, 123, 18283-18293.	1.5	16
41	Top-emission organic light emitting diodes with lower viewing angle dependence. Synthetic Metals, 2014, 189, 57-62.	2.1	15
42	Effect of anode buffer layer on the efficiency of inverted quantum-dot light-emitting diodes. Applied Physics Express, 2016, 9, 012103.	1.1	15
43	Sputter Depthâ€Profile Study of Accelerated Interface Mixing by Thermal Annealing in Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2018, 6, 1801627.	1.9	15
44	Thermally stable benzo[f]quinoline based bipolar host materials for green phosphorescent OLEDs. Organic Electronics, 2018, 63, 194-199.	1.4	15
45	Lithium Insertion into Disordered Carbons Prepared from Organic Polymers. Journal of the Electrochemical Society, 1998, 145, 3123-3129.	1.3	14
46	Benzoquinoline-based fluoranthene derivatives as electron transport materials for solution-processed red phosphorescent organic light-emitting diodes. RSC Advances, 2017, 7, 28520-28526.	1.7	14
47	Molecular Stacking Effect on Small-Molecular Organic Light-Emitting Diodes Prepared with Solution Process. ACS Applied Materials & amp; Interfaces, 2020, 12, 23244-23251.	4.0	14
48	Low-Leakage Polymeric Thin-Film Transistors Fabricated by Laser Assisted Lift-Off Technique. Japanese Journal of Applied Physics, 2005, 44, L1109-L1111.	0.8	13
49	Improving the efficiency of perovskite light emitting diode using polyvinylpyrrolidone as an interlayer. Applied Surface Science, 2020, 507, 145071.	3.1	13
50	Enhanced efficiency of organic light emitting devices (OLEDs) by control of laser imaging condition. Organic Electronics, 2012, 13, 833-839.	1.4	12
51	Improved out-coupling efficiency of organic light emitting diodes by manipulation of optical cavity length. Organic Electronics, 2015, 20, 49-54.	1.4	12
52	The role of electron-transporting Benzo[f]quinoline unit as an electron acceptor of new bipolar hosts for green PHOLEDs. Dyes and Pigments, 2019, 162, 959-966.	2.0	12
53	Operational lifetime improvement of solution-processed OLEDs: Effect of exciton formation region and degradation analysis by impedance spectroscopy. Organic Electronics, 2021, 99, 106346.	1.4	12
54	Preparation of graphite-like polymers from 1,3-diacetylenes: Pyrolytic poly[1-(2-methoxyphenyl)penta-1,3-diyn-5-ol]. Synthetic Metals, 1995, 71, 1763-1764.	2.1	11

Min Chul Suh

#	Article	IF	CITATIONS
55	A 3.0â€in. 308â€ppi WVGA AMOLED with a topâ€emission white OLED and color filter. Journal of the Society for Information Display, 2009, 17, 145-149.	0.8	11
56	53.2: <i>Invited Paper</i> : Largeâ€Area Colorâ€Patterning Technology for AMOLED. Digest of Technical Papers SID International Symposium, 2009, 40, 794-797.	0.1	11
57	The operating voltage behavior of green fluorescent organic light emitting diode with blue common layer structure during laser imaging process. Organic Electronics, 2012, 13, 2945-2953.	1.4	11
58	Cathode diffusion and degradation mechanism of polymeric light emitting devices. Chemical Physics Letters, 2005, 413, 205-209.	1.2	10
59	Green phosphorescent organic light emitting diodes with simple structure to realize an extremely low operating voltage. Synthetic Metals, 2015, 200, 143-147.	2.1	10
60	Ideal combination of the host and dopant materials showing thermally activated delayed fluorescent behavior. Synthetic Metals, 2015, 209, 47-54.	2.1	10
61	An indenocarbazole-based host material for solution processable green phosphorescent organic light emitting diodes. RSC Advances, 2021, 11, 29115-29123.	1.7	10
62	Degradation Mechanism of Solution-Processed Organic Light-Emitting Diodes: Sputter Depth-Profile Study. Applied Surface Science, 2021, 564, 150402.	3.1	10
63	Preparation and Characterization of Graphite-like Pyropolymers from (Z)-1-Methoxy-4-phenyl-1-buten-3-yne. Macromolecules, 1995, 28, 8707-8712.	2.2	9
64	Nonlinear optical and electrical properties of poly[1-(2-methoxyphenyl)penta-1,3-diyn-5-ol]. Synthetic Metals, 1995, 73, 141-143.	2.1	9
65	Soluble polymer layers as an anode buffer for organic light-emitting diodes. Current Applied Physics, 2009, 9, 505-509.	1.1	9
66	Full color organic light emitting diodes with laser-patterned optical path-length compensation layer. Organic Electronics, 2014, 15, 2830-2836.	1.4	9
67	Vacuum pyrolysis study of graphite-like pyropolymers from 1,4-diphenyl-1-buten-3-yne. Journal of Polymer Science Part A, 1996, 34, 3131-3139.	2.5	8
68	Photoconductivity of 3,5-dinitrobenzoate of poly[1-phenyl-1-penten-3-yn-5-ol] (DN-PPPYO) blended with poly[4-(p-N,N-diphenylaminophenyl)-1-phenyl-1-buten-3-yne] (PPAPBEY) as a hole transporting polymer. Macromolecular Chemistry and Physics, 1999, 200, 1991-1997.	1.1	8
69	Thermal buffer materials for enhancement of device performance of organic light emitting diodes fabricated by laser imaging process. Organic Electronics, 2014, 15, 2802-2809.	1.4	8
70	Suppression of viewing angle dependence of organic light emitting diodes by introduction of circular polarizer with nanoporous polymer film. Organic Electronics, 2017, 44, 232-237.	1.4	8
71	Suppression of the color shift of microcavity organic light-emitting diodes through the introduction of a circular polarizer with a nanoporous polymer film. Journal of Information Display, 2018, 19, 91-98.	2.1	7
72	Light modulation of top emission organic light emitting diodes showing strong microcavity effect by applying multilayered scattering film. Optics Express, 2018, 26, 1185.	1.7	7

MIN CHUL SUH

#	Article	IF	CITATIONS
73	The influence of dipyridylamine-carbazole based bipolar host materials for green PHOLEDs. Dyes and Pigments, 2019, 170, 107621.	2.0	7
74	An Enhanced Operational Stability of Organic Light Emitting Devices with Polymeric Buffer Layer. Japanese Journal of Applied Physics, 2012, 51, 041601.	0.8	7
75	Flat Band Voltage Shifts in Pentacene Organic Thin-Film Transistors. Japanese Journal of Applied Physics, 2005, 44, L1414-L1416.	0.8	6
76	Simple-structure white organic light emitting diodes with high color temperature. Current Applied Physics, 2012, 12, e42-e45.	1.1	6
77	Organic Interface Engineering for Stable Green PHOLEDs through an Ultrathin Interface Tunneling Layer. Advanced Materials Interfaces, 2018, 5, 1801034.	1.9	6
78	New bipolar host materials using Phenanthro[9,10-d]oxazole moiety for highly efficient red phosphorescence. Dyes and Pigments, 2020, 174, 108038.	2.0	6
79	The Ideal Doping Concentration in Phosphorescent Organic Light Emitting Devices. Japanese Journal of Applied Physics, 2011, 50, 061603.	0.8	6
80	Improvement of viewing angle dependence of bottom-emitting green organic light-emitting diodes with a strong microcavity effect. Optics Express, 2020, 28, 31686.	1.7	6
81	The effect of molecular aggregation of thermally activated delayed fluorescence sensitizers for hyperfluorescence in organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 4705-4716.	2.7	6
82	The positional effect of arylamines on pyrene core in a blue fluorescent dopant significantly affecting the performance of organic light emitting diodes. Dyes and Pigments, 2022, 205, 110505.	2.0	6
83	Synthesis and characterization of a new polymer containing an electron accepting perfluoro group. Macromolecular Chemistry and Physics, 1998, 199, 2107-2112.	1.1	5
84	Microstructure and electrochemical properties of some synthetic carbons. Synthetic Metals, 1999, 100, 195-204.	2.1	5
85	New Polymeric Buffer Materials with Low Driving Voltage. Journal of Nanoscience and Nanotechnology, 2012, 12, 1271-1275.	0.9	5
86	Operation voltage behavior of organic light emitting diodes with polymeric buffer layers doped by weak electron acceptor. Thin Solid Films, 2013, 546, 176-179.	0.8	5
87	The behaviour of solution-processed green phosphorescent organic light emitting diodes with undesirable host composition. Organic Electronics, 2018, 54, 222-230.	1.4	5
88	Non-symmetric 9,10-Di(2-naphthyl)anthracene derivatives as hosts and emitters for solution-processed blue fluorescent organic light emitting diodes. Journal of Industrial and Engineering Chemistry, 2020, 87, 90-99.	2.9	5
89	Photoconductivity of modified poly(vinyl esters). Synthetic Metals, 1998, 96, 195-198.	2.1	4
90	10.3: 4.0 Inch Organic Thin Film Transistor (OTFT) Based Active Matrix Organic Light Emitting Diode (AMOLED) Display. Digest of Technical Papers SID International Symposium, 2006, 37, 116.	0.1	4

IF # ARTICLE CITATIONS Effect of the thermal evaporation rate of Al cathodes on organic light emitting diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 188, 8-12. Polymerization of 2,4-hexadiyn-1,6-diol by chemical vapor deposition. Journal of Polymer Science Part 92 2.5 3 A, 1996, 34, 3255-3261. Photoconductivity of 3,5-dinitrobenzoates of poly[1-(p-methoxyphenyl)penta-1,3-diyn-5-ol] and poly[1-() Tj ETQq1 1 0.784314 rgBT An Enhanced Operational Stability of Organic Light Emitting Devices with Polymeric Buffer Layer. 94 0.8 3 Japanese Journal of Applied Physics, 2012, 51, 041601. Suppression of viewing angle dependence of TEOLED devices with internal nano-wrinkle structure. Organic Electronics, 2020, 77, 105493. 1.4 Synthesis of indenocarbazole-based efficient deep-blue fluorescent emitter with a narrow emission 96 2.9 3 band. Journal of Industrial and Engineering Chemistry, 2022, 107, 313-319. Preparation and X-ray crystallographic study of 6-(2-pyridyl)-3,5-hexadiyn-1-ol: the effect of monomer single crystal structure on polymerization. Synthetic Metals, 1995, 72, 51-57. 2.1 Preparation of a graphite-like pyropolymer from 6-trimethylsilyl-3,5-hexadiyn-2-one. Synthetic Metals, 98 2.12 1996, 80, 291-296. Photoconducting behavior of 3,5-dinitrobenzoate of poly[1-(n-methoxyphenyl)penta-1,3-diyn-5-ol]. 2.1 Synthetic Metals, 1997, 89, 73-76. The Ideal Doping Concentration in Phosphorescent Organic Light Emitting Devices. Japanese Journal of 100 0.8 9 Applied Physics, 2011, 50, 061603. Fabrication of a three-dimensional nanoporous polymer film as a diffuser for microcavity OLEDs., Synthesis of a New Polymeric Host Material for Efficient Organic Electro-Phosphorescent Devices. 102 0.9 1 Journal of Nanoscience and Nanotechnology, 2008, 8, 4649-4652. The effect of surface treatment of bottom contact organic thin film transistor. Synthetic Metals, 2.1 2011, 161, 1953-1957. The suppression of viewing angle dependence of top emission organic light emitting diodes having strong microcavity characteristics by applying concave patterned anode. Journal of the Society for 104 0.8 1 Information Display, 2018, 26, 79-84. Pâ€181: The Analysis of Energy Transfer Mechanism According to Abnormal Host Mixing Composition by Using Solutionâ€processed OLEDs. Digest of Technical Papers SID International Symposium, 2018, 49, 0.1 1838-1841. Pâ€212: Lateâ€News Poster: Influence of Index Matching Epoxy Filler at the Encapsulation Part for the Performance of TEOLED with Internal Wrinkle Structure. Digest of Technical Papers SID International 106 0.1 1 Symposium, 2019, 50, 1963-1965. Thermally Cross-Linkable Styrene-Based Host Materials for Solution-Processed Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2019, 19, 4705-4709. 13â€4: Lateâ€News Paper: Effect of Molecular Structure of Host Materials on Thermal Stability and Device 108 Characteristics of Solution Processed OLEDs. Digest of Technical Papers SID International Symposium, 0.1 1

MIN CHUL SUH

2020, 51, 172-175.

MIN CHUL SUH

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Red Electrophosphorescent Polymers Containing Pendant Iridium(III) Complex Moieties. Bulletin of the Korean Chemical Society, 2013, 34, 2609-2615.	1.0	1
110	Investigation of Interplay between Polyvinylpyrrolidone Interlayer and Perovskite Composition Affecting the Performance of Perovskite Light Emitting Diode. Advanced Electronic Materials, 2022, 8, 2100568.	2.6	1
111	Enhancement of Reverse Intersystem Crossing in Chargeâ€Transfer Molecule through Internal Heavy Atom Effect (Adv. Funct. Mater. 50/2021). Advanced Functional Materials, 2021, 31, .	7.8	1
112	Integration of solution-processed polymer thin-film transistors for reflective liquid crystal applications. Journal of Information Display, 2011, 12, 205-208.	2.1	0
113	Pâ€150: White OLED with Optical Pathâ€length Compensation Layer Formed by Laser Imaging Technology ^{â€} . Digest of Technical Papers SID International Symposium, 2014, 45, 1548-1550.	0.1	0
114	40.3: Optimization of Hostâ€Dopant System for Realizing Efficient Thermally Activated Delayed Fluorescence OLEDs. Digest of Technical Papers SID International Symposium, 2015, 46, 609-612.	0.1	0
115	P-205L: <i>Late-News Poster</i> : Improvement of Viewing Angle Dependence and Out-Coupling Efficiency of OLEDs with Strong Microcavity Structure by Introduction of Nanoporous Polymer Films. Digest of Technical Papers SID International Symposium, 2016, 47, 1792-1795.	0.1	0
116	38-4: The Interfacial Effect between HTL and EML on the Efficiency of Solution Processed Green Phosphorescent OLEDs. Digest of Technical Papers SID International Symposium, 2016, 47, 494-497.	0.1	0
117	Interface Tunneling Layer: Organic Interface Engineering for Stable Green PHOLEDs through an Ultrathin Interface Tunneling Layer (Adv. Mater. Interfaces 21/2018). Advanced Materials Interfaces, 2018, 5, 1870103.	1.9	0
118	Pâ€176: <i>Distinquished Poster Paper:</i> The Suppression of Viewing Angle Dependence of Top Emission Organic Light Emitting Diodes Having Strong Microcavity Characteristics by Applying Concave Patterned Anode. Digest of Technical Papers SID International Symposium, 2018, 49, 1822-1824.	0.1	0
119	Pâ€183: Improved Device Stability for Solutionâ€Processed Green Phosphorescent OLEDs via Interface Mixing Effect. Digest of Technical Papers SID International Symposium, 2018, 49, 1846-1849.	0.1	0
120	Pâ€209: Lateâ€News Poster: Influence of Drying and Mixing Condition of the Host Materials on the Lifetime of Solutionâ€Processed OLEDs. Digest of Technical Papers SID International Symposium, 2019, 50, 1954-1956.	0.1	0
121	Pâ€212: Lateâ€Newsâ€Poster: Study on the Ideal Structural Change of Perovskite LEDs for Enhanced Performances by Using Different Perovskite Composition. Digest of Technical Papers SID International Symposium, 2020, 51, 1783-1786.	0.1	0
122	Pâ€228: Lateâ€Newsâ€Poster: Compositional Effects of Crosslinkable Holeâ€Transport Materials on the Performance of Solutionâ€Processed OLEDs. Digest of Technical Papers SID International Symposium, 2020, 51, 2100-2103.	0.1	0
123	Pâ€229: Lateâ€Newsâ€Poster: Suppression of Viewingâ€Angle Dependence of Topâ€Emitting OLEDs by Applying Nanostructured Reflective Anode. Digest of Technical Papers SID International Symposium, 2020, 51, 2104-2106.	0.1	0
124	10.1: Invited Paper: Importance of Interface Control in Solution Processed Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 67-70.	0.1	0
125	Pâ€104: Improvement of Efficiency of a New Solution Processed Red Organic Light Emitting Diodes by Applying a New Crosslinked Hole Transport Layer. Digest of Technical Papers SID International Symposium, 2021, 52, 1470-1472.	0.1	0
126	45.4: The White Lightâ€Emitting Diode Using Organic Material and Perovskite Quantum Dots. Digest of Technical Papers SID International Symposium, 2021, 52, 553-555.	0.1	0

#	Article	IF	CITATIONS
127	13.5: Solution processed blue organic light emitting diodes with single component emitters crosslinkable below 150 ŰC for solution process. Digest of Technical Papers SID International Symposium, 2021, 52, 189-191.	0.1	0
128	Laser Patterning Technologies. , 2019, , 1-36.		0
129	Laser Patterning Technologies. , 2020, , 1-36.		0
130	Correlation between the structural morphology and device characteristics of quantum dot based emission layer blended with small molecular hole transport material. Applied Surface Science, 2021, , 151925.	3.1	0
131	Pâ€135: New Holeâ€Transport Materials Composed of Indenocarbazoleâ€Based Copolymer for Ultraâ€Highâ€Efficiency Solutionâ€Processed OLED. Digest of Technical Papers SID International Symposium, 2022, 53, 1517-1520.	0.1	0