
Susanne M Krug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3014439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissection of Barrier Dysfunction in Organoid-Derived Human Intestinal Epithelia Induced by Giardia duodenalis. Gastroenterology, 2022, 162, 844-858.	0.6	24
2	From 3D to 2D: Harmonization of Protocols for Two-dimensional Cultures on Cell Culture Inserts of Intestinal Organoids from Various Species. Bio-protocol, 2022, 12, e4295.	0.2	6
3	Claudin-10a Deficiency Shifts Proximal Tubular Cl- Permeability to Cation Selectivity via Claudin-2 Redistribution. Journal of the American Society of Nephrology: JASN, 2022, 33, 699-717.	3.0	20
4	MarvelD3 Is Upregulated in Ulcerative Colitis and Has Attenuating Effects during Colitis Indirectly Stabilizing the Intestinal Barrier. Cells, 2022, 11, 1541.	1.8	1
5	Tight junction channels claudinâ€10b and claudinâ€15: Functional mapping of poreâ€lining residues. Annals of the New York Academy of Sciences, 2022, 1515, 129-142.	1.8	9
6	MicroRNAâ€21â€5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury. Annals of the New York Academy of Sciences, 2022, 1515, 184-195.	1.8	6
7	Human duodenal organoidâ€derived monolayers serve as a suitable barrier model for duodenal tissue. Annals of the New York Academy of Sciences, 2022, 1515, 155-167.	1.8	10
8	Expression of tricellular tight junction proteins and the paracellular macromolecule barrier are recovered in remission of ulcerative colitis. BMC Gastroenterology, 2021, 21, 141.	0.8	19
9	Reprogramming Intestinal Epithelial Cell Polarity by Interleukin-22. Frontiers in Medicine, 2021, 8, 656047.	1.2	6
10	Angulin-1 (LSR) Affects Paracellular Water Transport, However Only in Tight Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 7827.	1.8	6
11	Angiocrine Regulation of Epithelial Barrier Integrity in Inflammatory Bowel Disease. Frontiers in Medicine, 2021, 8, 643607.	1.2	13
12	Netrin-1 as a Multitarget Barrier Stabilizer in the Peripheral Nerve after Injury. International Journal of Molecular Sciences, 2021, 22, 10090.	1.8	3
13	Editorial: Loss of Epithelial Barrier Integrity in Inflammatory Diseases: Cellular Mediators and Therapeutic Targets. Frontiers in Medicine, 2021, 8, 813153.	1.2	2
14	Claudinâ€15 forms a water channel through the tight junction with distinct function compared to claudinâ€2. Acta Physiologica, 2020, 228, e13334.	1.8	35
15	Leptin Downregulates Angulin-1 in Active Crohn's Disease via STAT3. International Journal of Molecular Sciences, 2020, 21, 7824.	1.8	11
16	Altered Structural Expression and Enzymatic Activity Parameters in Quiescent Ulcerative Colitis: Are These Potential Normalization Criteria?. International Journal of Molecular Sciences, 2020, 21, 1887.	1.8	8
17	Special Issue on "The Tight Junction and Its Proteins: More than Just a Barrier― International Journal of Molecular Sciences, 2020, 21, 4612.	1.8	13
18	Molecular architecture and assembly of the tight junction backbone. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183279.	1.4	67

#	Article	IF	CITATIONS
19	Contribution of Tricellulin to Paracellular Water Permeability in Two Epithelial Cell Lines of Different Tightness. FASEB Journal, 2020, 34, 1-1.	0.2	0
20	Impaired Tricellular Tight Junctions Open the Barrier for Lipopolysaccharide Uptake. FASEB Journal, 2020, 34, 1-1.	0.2	0
21	Store-operated calcium entry (SOCE) contributes to phosphorylation of p38 MAPK and suppression of TNF-α signalling in the intestinal epithelial cells. Cellular Signalling, 2019, 63, 109358.	1.7	9
22	Potential for Tight Junction Protein–Directed Drug Development Using Claudin Binders and Angubindin-1. International Journal of Molecular Sciences, 2019, 20, 4016.	1.8	28
23	Tricellulin Effect on Paracellular Water Transport. International Journal of Molecular Sciences, 2019, 20, 5700.	1.8	15
24	Tissue plasminogen activator and neuropathy open the blood-nerve barrier with upregulation of microRNA-155-5p in male rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1160-1169.	1.8	16
25	Gelatinolytic activity of autocrine matrix metalloproteinase-9 leads to endothelial de-arrangement in Moyamoya disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1940-1953.	2.4	25
26	Tricellulin is regulated via interleukin-13-receptor α2, affects macromolecule uptake, and is decreased in ulcerative colitis. Mucosal Immunology, 2018, 11, 345-356.	2.7	63
27	Campylobacter jejuni impairs sodium transport and epithelial barrier function via cytokine release in human colon. Mucosal Immunology, 2018, 11, 474-485.	2.7	36
28	Autocrine release of angiopoietin-2 mediates cerebrovascular disintegration in Moyamoya disease. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1527-1539.	2.4	26
29	Architectural and functional alterations of the small intestinal mucosa in classical Whipple's disease. Mucosal Immunology, 2017, 10, 1542-1552.	2.7	14
30	Activation of muscarinic receptors prevents TNF-α-mediated intestinal epithelial barrier disruption through p38 MAPK. Cellular Signalling, 2017, 35, 188-196.	1.7	30
31	Lactoferrin protects against intestinal inflammation and bacteriaâ€induced barrier dysfunction <i>in vitro</i> . Annals of the New York Academy of Sciences, 2017, 1405, 177-188.	1.8	60
32	Trictide, a tricellulinâ€derived peptide to overcome cellular barriers. Annals of the New York Academy of Sciences, 2017, 1405, 89-101.	1.8	18
33	Angubindin-1, a novel paracellular absorption enhancer acting at the tricellular tight junction. Journal of Controlled Release, 2017, 260, 1-11.	4.8	48
34	Mend Your Fences. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 33-46.	2.3	407
35	Contribution of the tricellular tight junction to paracellular permeability in leaky and tight epithelia. Annals of the New York Academy of Sciences, 2017, 1397, 219-230.	1.8	26
36	Tight junctions of the proximal tubule and their channel proteins. Pflugers Archiv European Journal of Physiology, 2017, 469, 877-887.	1.3	36

#	Article	IF	CITATIONS
37	Myrrh exerts barrier-stabilising and -protective effects in HT-29/B6 and Caco-2 intestinal epithelial cells. International Journal of Colorectal Disease, 2017, 32, 623-634.	1.0	19
38	<i>Campylobacter fetus</i> impairs barrier function in HTâ€29/B6 cells through focal tight junction alterations and leaks. Annals of the New York Academy of Sciences, 2017, 1405, 189-201.	1.8	12
39	Crystal structure of the tricellulin Câ€terminal coiledâ€coil domain reveals a unique mode of dimerization. Annals of the New York Academy of Sciences, 2017, 1405, 147-159.	1.8	9
40	Claudinâ€2â€mediated cation and water transport share a common pore. Acta Physiologica, 2017, 219, 521-536.	1.8	93
41	The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling. Molecular Nutrition and Food Research, 2016, 60, 2576-2586.	1.5	70
42	A novel method for imaging sites of paracellular passage of macromolecules in epithelial sheets. Journal of Controlled Release, 2016, 229, 70-79.	4.8	24
43	Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials, 2016, 82, 20-33.	5.7	28
44	Tight Junction Ultrastructure Alterations in a Mouse Model of Enteral Nutrient Deprivation. Digestive Diseases and Sciences, 2016, 61, 1524-1533.	1.1	7
45	Molecular basis of claudin-17 anion selectivity. Cellular and Molecular Life Sciences, 2016, 73, 185-200.	2.4	28
46	Interleukinâ€∎3 affects the epithelial sodium channel in the intestine by coordinated modulation of STAT6 and p38 MAPK activity. Journal of Physiology, 2015, 593, 5269-5282.	1.3	30
47	Activation of muscarinic cholinoceptor ameliorates tumor necrosis factorâ€Î±â€induced barrier dysfunction in intestinal epithelial cells. FEBS Letters, 2015, 589, 3640-3647.	1.3	19
48	Tight junction, selective permeability, and related diseases. Seminars in Cell and Developmental Biology, 2014, 36, 166-176.	2.3	245
49	410 Impaired Epithelial Barrier for Macromolecules in Ulcerative Colitis Is Caused by Downregulation of the Tricellular Tight Junction Protein Tricellulin, Mediated by the Interleukin-13 Receptor α2-Activated Pathway. Gastroenterology, 2014, 146, S-88.	0.6	1
50	Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood–nerve–barrier permeability. Journal of Controlled Release, 2014, 185, 88-98.	4.8	37
51	Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins. Molecular Biology of the Cell, 2014, 25, 2710-2719.	0.9	100
52	Laurate Permeates the Paracellular Pathway for Small Molecules in the Intestinal Epithelial Cell Model HT-29/B6 via Opening the Tight Junctions by Reversible Relocation of Claudin-5. Pharmaceutical Research, 2014, 31, 2539-2548.	1.7	31
53	CK2-dependent phosphorylation of occludin regulates the interaction with ZO-proteins and tight junction integrity. Cell Communication and Signaling, 2013, 11, 40.	2.7	40
54	Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials, 2013, 34, 275-282.	5.7	130

#	Article	IF	CITATIONS
55	Improved Cell Line IPEC-J2, Characterized as a Model for Porcine Jejunal Epithelium. PLoS ONE, 2013, 8, e79643.	1.1	83
56	Transient opening of the perineurial barrier for analgesic drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2018-27.	3.3	87
57	Claudin-17 forms tight junction channels with distinct anion selectivity. Cellular and Molecular Life Sciences, 2012, 69, 2765-2778.	2.4	103
58	The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials, 2012, 33, 2791-2800.	5.7	108
59	Creation and biochemical analysis of a broad-specific claudin binder. Biomaterials, 2012, 33, 3464-3474.	5.7	45
60	From TER to trans―and paracellular resistance: lessons from impedance spectroscopy. Annals of the New York Academy of Sciences, 2012, 1257, 142-151.	1.8	24
61	Chargeâ€selective claudin channels. Annals of the New York Academy of Sciences, 2012, 1257, 20-28.	1.8	96
62	Determinants contributing to claudin ion channel formation. Annals of the New York Academy of Sciences, 2012, 1257, 45-53.	1.8	10
63	Interleukin-7 Links T Lymphocyte and Intestinal Epithelial Cell Homeostasis. PLoS ONE, 2012, 7, e31939.	1.1	35
64	Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Laboratory Investigation, 2011, 91, 310-324.	1.7	35
65	Aerolysin From Aeromonas hydrophila Perturbs Tight Junction Integrity and Cell Lesion Repair in Intestinal Epithelial HT-29/B6 Cells. Journal of Infectious Diseases, 2011, 204, 1283-1292.	1.9	63
66	Tricellulin forms homomeric and heteromeric tight junctional complexes. Cellular and Molecular Life Sciences, 2010, 67, 2057-2068.	2.4	40
67	TNFα-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFκB signaling. Journal of Cell Science, 2010, 123, 4145-4155.	1.2	196
68	Biophysical Methods to Study Tight Junction Permeability. Current Topics in Membranes, 2010, , 39-78.	0.5	11
69	Claudin-2, a component of the tight junction, forms a paracellular water channel. Journal of Cell Science, 2010, 123, 1913-1921.	1.2	345
70	Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2048-2057.	1.4	193
71	Cnksr3 is a direct mineralocorticoid receptor target gene and plays a key role in the regulation of the epithelial sodium channel. FASEB Journal, 2009, 23, 3936-3946.	0.2	53
72	Tricellulin Forms a Barrier to Macromolecules in Tricellular Tight Junctions without Affecting Ion Permeability. Molecular Biology of the Cell, 2009, 20, 3713-3724.	0.9	288

#	Article	IF	CITATIONS
73	Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. Journal of Cell Science, 2009, 122, 1507-1517.	1.2	170
74	TNFα up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell and Tissue Research, 2009, 336, 67-77.	1.5	135
75	Highâ€Resolution Analysis of Barrier Function. Annals of the New York Academy of Sciences, 2009, 1165, 74-81.	1.8	26
76	Claudin Function in the Thick Ascending Limb of Henle's Loop. Annals of the New York Academy of Sciences, 2009, 1165, 152-162.	1.8	24
77	Tight Junction Proteins as Channel Formers and Barrier Builders. Annals of the New York Academy of Sciences, 2009, 1165, 211-219.	1.8	48
78	Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochemical and Biophysical Research Communications, 2009, 378, 45-50.	1.0	87
79	Two-Path Impedance Spectroscopy for Measuring Paracellular and Transcellular Epithelial Resistance. Biophysical Journal, 2009, 97, 2202-2211.	0.2	85
80	The tight junction protein claudinâ€2 forms a paracellular water channel. FASEB Journal, 2009, 23, 796.5.	0.2	1