
Hai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3014327/publications.pdf Version: 2024-02-01

HALMANC

#	Article	IF	CITATIONS
1	Suppression of Energy Metabolism in Cancer Cells with Nutrient-Sensing Nanodrugs. Nano Letters, 2022, 22, 2514-2520.	4.5	13
2	Regulation of Nucleotide Metabolism with Nutrientâ€Sensing Nanodrugs for Cancer Therapy. Advanced Science, 2022, 9, e2200482.	5.6	8
3	Intratumoral administration of pro-inflammatory allogeneic dendritic cells improved the anti-tumor response of systemic anti-CTLA-4 treatment via unleashing a T cell-dependent response. Oncolmmunology, 2022, 11, .	2.1	5
4	Carbon nano-onion-mediated dual targeting of P-selectin and P-glycoprotein to overcome cancer drug resistance. Nature Communications, 2021, 12, 312.	5.8	52
5	<i>In Situ</i> Transforming RNA Nanovaccines from Polyethylenimine Functionalized Graphene Oxide Hydrogel for Durable Cancer Immunotherapy. Nano Letters, 2021, 21, 2224-2231.	4.5	116
6	Concurrent expression of HP-NAP enhances antitumor efficacy of oncolytic vaccinia virus but not for Semliki Forest virus. Molecular Therapy - Oncolytics, 2021, 21, 356-366.	2.0	7
7	Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19. ACS Nano, 2021, 15, 14347-14359.	7.3	73
8	Targeted Heating of Mitochondria Greatly Augments Nanoparticleâ€Mediated Cancer Chemotherapy. Advanced Healthcare Materials, 2020, 9, e2000181.	3.9	19
9	Cold-Responsive Nanoparticle Enables Intracellular Delivery and Rapid Release of Trehalose for Organic-Solvent-Free Cryopreservation. Nano Letters, 2019, 19, 9051-9061.	4.5	53
10	Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nature Nanotechnology, 2019, 14, 388-397.	15.6	107
11	Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial. ACS Central Science, 2018, 4, 567-581.	5.3	49
12	Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nature Communications, 2018, 9, 562.	5.8	242
13	Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells and Tumor. Methods in Molecular Biology, 2018, 1831, 59-67.	0.4	7
14	Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform. Biomaterials, 2018, 180, 265-278.	5.7	25
15	Biological effects of amphiphilic copolymer nanoparticle-encapsulated multi-target chemotherapeutic drugs on MCF-7 human breast cancer cells. Metabolomics, 2017, 13, 1.	1.4	5
16	Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery. ACS Nano, 2017, 11, 6691-6702.	7.3	121
17	A Nano-In-Micro System for Enhanced Stem Cell Therapy of Ischemic Diseases. ACS Central Science, 2017, 3, 875-885.	5.3	41
18	Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod. ACS Nano, 2017, 11, 8103-8113.	7.3	135

Hai Wang

#	Article	IF	CITATIONS
19	A Nearâ€Infrared Laserâ€Activated "Nanobombâ€Ifor Breaking the Barriers to MicroRNA Delivery. Advanced Materials, 2016, 28, 347-355.	11.1	48
20	Conformal Nanoencapsulation of Allogeneic T Cells Mitigates Graft- <i>versus</i> -Host Disease and Retains Graft- <i>versus</i> -Leukemia Activity. ACS Nano, 2016, 10, 6189-6200.	7.3	25
21	Enhanced Microwave Hyperthermia of Cancer Cells with Fullerene. Molecular Pharmaceutics, 2016, 13, 2184-2192.	2.3	35
22	Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials, 2016, 97, 62-73.	5.7	87
23	Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction. Nature Communications, 2016, 7, 13306.	5.8	89
24	Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio-toxicity. Science Bulletin, 2016, 61, 1689-1698.	4.3	32
25	Assembly of hepatitis E vaccine by â€~in situ' growth of gold clusters as nano-adjuvants: an efficient way to enhance the immune responses of vaccination. Nanoscale Horizons, 2016, 1, 394-398.	4.1	15
26	Nanodrug-Mediated Thermotherapy of Cancer Stem-Like Cells. Journal of Nanoscience and Nanotechnology, 2016, 16, 2134-2142.	0.9	7
27	Improvement of the in vitro safety profile and cytoprotective efficacy of amifostine against chemotherapy by PEGylation strategy. Biochemical Pharmacology, 2016, 108, 11-21.	2.0	14
28	Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine, 2016, 11, 103-106.	1.7	70
29	Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 439-448.	1.7	41
30	Facile Synthesis of pHâ€sensitive Germanium Nanocrystals with High Quantum Yield for Intracellular Acidic Compartment Imaging. Small, 2015, 11, 1954-1961.	5.2	34
31	Multi-layered polymeric nanoparticles for pH-responsive and sequenced release of theranostic agents. Chemical Communications, 2015, 51, 7733-7736.	2.2	19
32	Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells. ACS Nano, 2015, 9, 5725-5740.	7.3	241
33	Nanoparticle-Mediated Intracellular Delivery Enables Cryopreservation of Human Adipose-Derived Stem Cells Using Trehalose as the Sole Cryoprotectant. ACS Applied Materials & Interfaces, 2015, 7, 5017-5028.	4.0	105
34	Biodegradable cationic Îμ-poly-L-lysine-conjugated polymeric nanoparticles as a new effective antibacterial agent. Science Bulletin, 2015, 60, 216-226.	4.3	32
35	Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 2015, 46, 13-25.	5.7	208
36	Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials, 2015, 72, 74-89.	5.7	183

Hai Wang

#	Article	IF	CITATIONS
37	A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents. Nature Communications, 2015, 6, 10081.	5.8	99
38	Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS Nano, 2014, 8, 11529-11542.	7.3	220
39	Engineering the Assemblies of Biomaterial Nanocarriers for Delivery of Multiple Theranostic Agents with Enhanced Antitumor Efficacy. Advanced Materials, 2013, 25, 1616-1622.	11.1	95
40	Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials, 2013, 34, 6967-6975.	5.7	35
41	iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials, 2013, 34, 3523-3533.	5.7	129
42	Multifunctional nanoparticle systems for combined chemoand photothermal cancer therapy. Frontiers of Materials Science, 2013, 7, 118-128.	1.1	16
43	Co-delivery Strategies Based on Multifunctional Nanocarriers for Cancer Therapy. Current Drug Metabolism, 2012, 13, 1087-1096.	0.7	24
44	Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials, 2011, 32, 8281-8290.	5.7	539