Mohan K Balasubramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3014261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Nature Communications, 2022, 13, .	5.8	27
2	Time-varying mobility and turnover of actomyosin ring components during cytokinesis in <i>Schizosaccharomyces pombe</i> . Molecular Biology of the Cell, 2021, 32, 237-246.	0.9	8
3	Calponin-homology domain mediated bending of membrane-associated actin filaments. ELife, 2021, 10, .	2.8	21
4	Inhibition of cell membrane ingression at the division site by cell walls in fission yeast. Molecular Biology of the Cell, 2020, 31, 2306-2314.	0.9	4
5	Pick-ya actin: a method to purify actin isoforms with bespoke key post-translational modifications. Journal of Cell Science, 2020, 133, .	1.2	20
6	Genetic suppression of defective profilin by attenuated Myosin II reveals a potential role for Myosin II in actin dynamics in vivo in fission yeast. Molecular Biology of the Cell, 2020, 31, 2107-2114.	0.9	2
7	Polar relaxation by dynein-mediated removal of cortical myosin II. Journal of Cell Biology, 2020, 219, .	2.3	41
8	Phosphoregulation of tropomyosin-actin interaction revealed using a genetic code expansion strategy. Wellcome Open Research, 2020, 5, 161.	0.9	0
9	Expanding the Zebrafish Genetic Code through Site-Specific Introduction of Azido-lysine, Bicyclononyne-lysine, and Diazirine-lysine. International Journal of Molecular Sciences, 2019, 20, 2577.	1.8	10
10	Actin turnover ensures uniform tension distribution during cytokinetic actomyosin ring contraction. Molecular Biology of the Cell, 2019, 30, 933-941.	0.9	14
11	Phosphoregulation of tropomyosin is crucial for actin cable turnover and division site placement. Journal of Cell Biology, 2019, 218, 3548-3559.	2.3	16
12	Evidence that a steric clash in the upper 50KDa domain of the motor Myo2p leads to cytokinesis defects in fission yeast. Journal of Cell Science, 2018, 131, .	1.2	5
13	Equatorial Assembly of the Cell-Division Actomyosin Ring in the Absence of Cytokinetic Spatial Cues. Current Biology, 2018, 28, 955-962.e3.	1.8	9
14	Rapid production of pure recombinant actin isoforms in <i>Pichia pastoris</i> . Journal of Cell Science, 2018, 131, .	1.2	31
15	Opposing kinesin complexes queue at plus tips to ensure microtubule catastrophe at cell ends. EMBO Reports, 2018, 19, .	2.0	11
16	Motor Activity Dependent and Independent Functions of Myosin II Contribute to Actomyosin Ring Assembly and Contraction in Schizosaccharomyces pombe. Current Biology, 2017, 27, 751-757.	1.8	24
17	Myo2p is the major motor involved in actomyosin ring contraction in fission yeast. Current Biology, 2017, 27, R99-R100.	1.8	11
18	Cell Polarity in Yeast. Annual Review of Cell and Developmental Biology, 2017, 33, 77-101.	4.0	179

#	Article	IF	CITATIONS
19	Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction. Journal of Cell Biology, 2017, 216, 2657-2667.	2.3	39
20	Exploring the diversity of cytokinesis. Seminars in Cell and Developmental Biology, 2016, 53, 1.	2.3	2
21	Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis. Current Biology, 2016, 26, R719-R737.	1.8	95
22	Novel actin filaments fromBacillus thuringiensisform nanotubules for plasmid DNA segregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1200-E1205.	3.3	16
23	Isolation of Cytokinetic Actomyosin Rings from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods in Molecular Biology, 2016, 1369, 125-136.	0.4	13
24	A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast. PLoS Genetics, 2016, 12, e1006383.	1.5	29
25	Curvature-induced expulsion of actomyosin bundles during cytokinetic ring contraction. ELife, 2016, 5, .	2.8	18
26	Site Specific Genetic Incorporation of Azidophenylalanine in Schizosaccharomyces pombe. Scientific Reports, 2015, 5, 17196.	1.6	18
27	The yeast actin cytoskeleton. FEMS Microbiology Reviews, 2014, 38, 213-227.	3.9	73
28	Rewiring Mid1p-Independent Medial Division in Fission Yeast. Current Biology, 2014, 24, 2181-2188.	1.8	10
29	Bacteria spring a surprise. ELife, 2014, 3, e03435.	2.8	1
30	In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics. Nature Cell Biology, 2013, 15, 853-859.	4.6	98
31	Timing it right: Precise ON/OFF switches for Rho1 and Cdc42 GTPases in cytokinesis. Journal of Cell Biology, 2013, 202, 187-189.	2.3	3
32	Insight into Actin Organization and Function in Cytokinesis from Analysis of Fission Yeast Mutants. Genetics, 2013, 194, 435-446.	1.2	6
33	The <i>Nitrosopumilus maritimus</i> CdvB, but Not FtsZ, Assembles into Polymers. Archaea, 2013, 2013, 1-10.	2.3	18
34	Meiotic actin rings are essential for proper sporulation in fission yeast. Journal of Cell Science, 2012, 125, 2544-2544.	1.2	1
35	Cylindrical Cellular Geometry Ensures Fidelity of Division Site Placement in Fission Yeast. Journal of Cell Science, 2012, 125, 3850-7.	1.2	35
36	The fission yeast septation initiation network (SIN) kinase, Sid2, is required for SIN asymmetry and regulates the SIN scaffold, Cdc11. Molecular Biology of the Cell, 2012, 23, 1636-1645.	0.9	40

#	Article	IF	CITATIONS
37	Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast. Journal of Cell Biology, 2012, 199, 831-847.	2.3	92
38	Comparing contractile apparatusâ€driven cytokinesis mechanisms across kingdoms. Cytoskeleton, 2012, 69, 942-956.	1.0	35
39	Novel Actin-like Filament Structure from Clostridium tetani. Journal of Biological Chemistry, 2012, 287, 21121-21129.	1.6	29
40	IQGAP-Related Rng2p Organizes Cortical Nodes and Ensures Position of Cell Division in Fission Yeast. Current Biology, 2011, 21, 467-472.	1.8	64
41	SIN-Inhibitory Phosphatase Complex Promotes Cdc11p Dephosphorylation and Propagates SIN Asymmetry in Fission Yeast. Current Biology, 2011, 21, 1968-1978.	1.8	55
42	Marker reconstitution mutagenesis: a simple and efficient reverse genetic approach. Yeast, 2011, 28, 205-212.	0.8	23
43	<i>Bacillus anthracis</i> tubulinâ€related protein Baâ€TubZ assembles forceâ€generating polymers. Cytoskeleton, 2011, 68, 501-511.	1.0	2
44	Myosin concentration underlies cell size–dependent scalability of actomyosin ring constriction. Journal of Cell Biology, 2011, 195, 799-813.	2.3	50
45	The mitosis-to-interphase transition is coordinated by cross talk between the SIN and MOR pathways in <i>Schizosaccharomyces pombe</i> . Journal of Cell Biology, 2010, 190, 793-805.	2.3	43
46	Regulation of cell cycle-specific gene expression in fission yeast by the Cdc14p-like phosphatase Clp1p. Journal of Cell Science, 2010, 123, 4374-4381.	1.2	26
47	Positioning cytokinesis. Genes and Development, 2009, 23, 660-674.	2.7	97
48	The Meiosis-Specific Sid2p-related Protein Slk1p Regulates Forespore Membrane Assembly in Fission Yeast. Molecular Biology of the Cell, 2008, 19, 3676-3690.	0.9	21
49	Assembly of normal actomyosin rings in the absence of Mid1p and cortical nodes in fission yeast. Journal of Cell Biology, 2008, 183, 979-988.	2.3	87
50	<i>Schizosaccharomyces pombe</i> Pak-related protein, Pak1p/Orb2p, phosphorylates myosin regulatory light chain to inhibit cytokinesis. Journal of Cell Biology, 2008, 183, 785-793.	2.3	36
51	Nuc2p, a Subunit of the Anaphase-Promoting Complex, Inhibits Septation Initiation Network Following Cytokinesis in Fission Yeast. PLoS Genetics, 2008, 4, e17.	1.5	8
52	The bacterial cell division protein FtsZ assembles into cytoplasmic rings in fission yeast. Genes and Development, 2008, 22, 1741-1746.	2.7	54
53	Pxl1p, a Paxillin-related Protein, Stabilizes the Actomyosin Ring during Cytokinesis in Fission Yeast. Molecular Biology of the Cell, 2008, 19, 1680-1692.	0.9	41
54	Polarity Determinants Tea1p, Tea4p, and Pom1p Inhibit Division-Septum Assembly at Cell Ends in Fission Yeast. Developmental Cell, 2007, 12, 987-996.	3.1	74

#	Article	IF	CITATIONS
55	Filament Formation of the Escherichia coli Actin-Related Protein, MreB, in Fission Yeast. Current Biology, 2007, 17, 266-272.	1.8	46
56	A Cyclin-Dependent Kinase that Promotes Cytokinesis through Modulating Phosphorylation of the Carboxy Terminal Domain of the RNA Pol II Rpb1p Sub-Unit. PLoS ONE, 2007, 2, e433.	1.1	38
57	Assembly of Microtubules and Actomyosin Rings in the Absence of Nuclei and Spindle Pole Bodies Revealed by a Novel Genetic Method. PLoS ONE, 2007, 2, e618.	1.1	4
58	Schizosaccharomyces pombehomolog of Survivin, Bir1p, exhibits a novel dynamic behavior at the spindle mid-zone. Genes To Cells, 2006, 11, 815-827.	0.5	3
59	Yeast lipid rafts? – An emerging view. Trends in Cell Biology, 2006, 16, 1-4.	3.6	94
60	Cell Cycle-dependent Roles for the FCH-Domain Protein Cdc15p in Formation of the Actomyosin Ring inSchizosaccharomyces pombe. Molecular Biology of the Cell, 2006, 17, 3254-3266.	0.9	61
61	A Role for the Septation Initiation Network in Septum Assembly Revealed by Genetic Analysis of sid2-250 Suppressors. Genetics, 2006, 172, 2101-2112.	1.2	40
62	The 14-3-3 Protein Rad24p Modulates Function of the Cdc14p Family Phosphatase Clp1p/Flp1p in Fission Yeast. Current Biology, 2005, 15, 1376-1383.	1.8	38
63	The 14-3-3 Protein Rad24p Modulates Function of the Cdc14p Family Phosphatase Clp1p/Flp1p in Fission Yeast. Current Biology, 2005, 15, 1603.	1.8	1
64	The Novel Fission Yeast Protein Pal1p Interacts with Hip1-related Sla2p/End4p and Is Involved in Cellular Morphogenesis. Molecular Biology of the Cell, 2005, 16, 4124-4138.	0.9	35
65	Identification of Cell Cycle-regulated Genes in Fission Yeast. Molecular Biology of the Cell, 2005, 16, 1026-1042.	0.9	159
66	The Nuclear Kinase Lsk1p Positively Regulates the Septation Initiation Network and Promotes the Successful Completion of Cytokinesis in Response to Perturbation of the Actomyosin Ring inSchizosaccharomyces pombe. Molecular Biology of the Cell, 2005, 16, 358-371.	0.9	47
67	Systematic Deletion Analysis of Fission Yeast Protein Kinases. Eukaryotic Cell, 2005, 4, 799-813.	3.4	86
68	Role of Septins and the Exocyst Complex in the Function of Hydrolytic Enzymes Responsible for Fission Yeast Cell Separation. Molecular Biology of the Cell, 2005, 16, 4867-4881.	0.9	84
69	Roles of Pdk1p, a Fission Yeast Protein Related to Phosphoinositide-dependent Protein Kinase, in the Regulation of Mitosis and Cytokinesis. Molecular Biology of the Cell, 2005, 16, 3162-3175.	0.9	12
70	Hsp90 Protein in Fission Yeast Swo1p and UCS Protein Rng3p Facilitate Myosin II Assembly and Function. Eukaryotic Cell, 2005, 4, 567-576.	3.4	44
71	Myosin-II reorganization during mitosis is controlled temporally by its dephosphorylation and spatially by Mid1 in fission yeast. Journal of Cell Biology, 2004, 165, 685-695.	2.3	108
72	The Clp1p/Flp1p phosphatase ensures completion of cytokinesis in response to minor perturbation of the cell division machinery in Schizosaccharomyces pombe. Journal of Cell Science, 2004, 117, 3897-3910.	1.2	77

#	Article	IF	CITATIONS
73	A Potential Tension-Sensing Mechanism that Ensures Timely Anaphase Onset upon Metaphase Spindle Orientation. Current Biology, 2004, 14, 69-74.	1.8	21
74	Sid4p-Cdc11p Assembles the Septation Initiation Network and Its Regulators at the S. pombe SPB. Current Biology, 2004, 14, 579-584.	1.8	66
75	Comparative Analysis of Cytokinesis in Budding Yeast, Fission Yeast and Animal Cells. Current Biology, 2004, 14, R806-R818.	1.8	286
76	Identification of genes encoding putative nucleoporins and transport factors in the fission yeastSchizosaccharomyces pombe: a deletion analysis. Yeast, 2004, 21, 495-509.	0.8	47
77	Structure, crystal packing and molecular dynamics of the calponin-homology domain ofSchizosaccharomyces pombeRng2. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1396-1403.	2.5	12
78	The N-degron approach to create temperature-sensitive mutants in Schizosaccharomyces pombe. Methods, 2004, 33, 206-212.	1.9	26
79	Regulation of Cytokinesis. , 2004, , 243-254.		1
80	Cytokinesis: relative alignment of the cell division apparatus and the mitotic spindle. Current Opinion in Cell Biology, 2003, 15, 82-87.	2.6	17
81	Cytokinesis in fission yeast: a story of rings, rafts and walls. Trends in Genetics, 2003, 19, 403-408.	2.9	51
82	Expression, purification, crystallization and preliminary crystallographic analysis of the calponin-homology domain of Rng2. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1809-1812.	2.5	3
83	Reply: Deletion of Mia1/Alp7 activates Mad2-dependent spindle assembly checkpoint in fission yeast. Nature Cell Biology, 2003, 5, 766-766.	4.6	3
84	Sterol-rich plasma membrane domains in the fission yeastSchizosaccharomyces pombe. Journal of Cell Science, 2003, 116, 867-874.	1.2	157
85	Rho3p Regulates Cell Separation by Modulating Exocyst Function in <i>Schizosaccharomyces pombe</i> . Genetics, 2003, 164, 1323-1331.	1.2	51
86	The Multiprotein Exocyst Complex Is Essential for Cell Separation inSchizosaccharomyces pombe. Molecular Biology of the Cell, 2002, 13, 515-529.	0.9	168
87	The Localization of the Integral Membrane Protein Cps1p to the Cell Division Site is Dependent on the Actomyosin Ring and the Septation-Inducing Network inSchizosaccharomyces pombe. Molecular Biology of the Cell, 2002, 13, 989-1000.	0.9	87
88	Importance of a Myosin II-Containing Progenitor for Actomyosin Ring Assembly in Fission Yeast. Current Biology, 2002, 12, 724-729.	1.8	48
89	Astral microtubules monitor metaphase spindle alignment in fission yeast. Nature Cell Biology, 2002, 4, 816-820.	4.6	61
90	<i>Schizosaccharomyces pombe</i> Bir1p, a Nuclear Protein That Localizes to Kinetochores and the Spindle Midzone, Is Essential for Chromosome Condensation and Spindle Elongation During Mitosis. Genetics, 2002, 160, 445-456.	1.2	39

#	Article	IF	CITATIONS
91	Advances in Cytokinesis Research. Interactions of Cdc4p, a Myosin Light Chain, with IQ-domain Containing Proteins in Schizosaccharomyces pombe Cell Structure and Function, 2001, 26, 555-565.	0.5	37
92	Cell cycle: The Flp side of Cdc14. Current Biology, 2001, 11, R872-R874.	1.8	4
93	Type II myosin regulatory light chain relieves auto-inhibition of myosin-heavy-chain function. Nature Cell Biology, 2000, 2, 855-858.	4.6	89
94	Bgs2p, a 1,3-β-glucan synthase subunit, is essential for maturation of ascospore wall inSchizosaccharomyces pombe. FEBS Letters, 2000, 478, 105-108.	1.3	60
95	Evidence for F-actin-dependent and -independent mechanisms involved in assembly and stability of the medial actomyosin ring in fission yeast. EMBO Journal, 1999, 18, 854-862.	3.5	118
96	Identification of cold-sensitive mutations in theSchizosaccharomyces pombeactin locus. FEBS Letters, 1999, 451, 321-326.	1.3	15
97	S. pombePbh1p: an inhibitor of apoptosis domain containing protein is essential for chromosome segregation. FEBS Letters, 1999, 460, 187-190.	1.3	31
98	Drc1p/Cps1p, a 1,3-β-Glucan Synthase Subunit, Is Essential for Division Septum Assembly in Schizosaccharomyces pombe. Genetics, 1999, 153, 1193-1203.	1.2	139
99	Rng2p, a protein required for cytokinesis in fission yeast, is a component of the actomyosin ring and the spindle pole body. Current Biology, 1998, 8, 611-621.	1.8	144
100	Byr4 and Cdc16 form a two-component GTPase-activating protein for the Spg1 GTPase that controls septation in fission yeast. Current Biology, 1998, 8, 947-954.	1.8	153
101	The <i>cdr2</i> ⁺ Gene Encodes a Regulator of G ₂ /M Progression and Cytokinesis in <i>Schizosaccharomyces pombe</i> . Molecular Biology of the Cell, 1998, 9, 3399-3415.	0.9	102
102	Isolation and Characterization of New Fission Yeast Cytokinesis Mutants. Genetics, 1998, 149, 1265-1275.	1.2	247
103	Cytokinesis in fission yeast Schizosaccharomyces pombe. Methods in Enzymology, 1997, 283, 494-506.	0.4	115
104	A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature, 1992, 360, 84-87.	13.7	238
105	A Meiotic Actin Ring (MeiAR) Essential for Proper Sporulation in Fission Yeast. Journal of Cell Science, 0, , .	1.2	14