## Alexander J Hartemink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3013979/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 2012, 22, 1813-1831.                              | 5.5  | 1,708     |
| 2  | Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 2014, 346, 1256846.                    | 12.6 | 379       |
| 3  | Computational and experimental identification of novel human imprinted genes. Genome Research, 2007, 17, 1723-1730.                         | 5.5  | 344       |
| 4  | Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature, 2008, 453, 944-947.                              | 27.8 | 269       |
| 5  | <i>Drosophila</i> ORC localizes to open chromatin and marks sites of cohesin complex loading.<br>Genome Research, 2010, 20, 201-211.        | 5.5  | 248       |
| 6  | Genome-wide prediction of imprinted murine genes. Genome Research, 2005, 15, 875-884.                                                       | 5.5  | 237       |
| 7  | Synergistic and tunable human gene activation by combinations of synthetic transcription factors.<br>Nature Methods, 2013, 10, 239-242.     | 19.0 | 222       |
| 8  | SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome<br>Biology, 2016, 17, 106.                | 8.8  | 155       |
| 9  | Reverse engineering gene regulatory networks. Nature Biotechnology, 2005, 23, 554-555.                                                      | 17.5 | 141       |
| 10 | MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biology, 2017, 18, 138. | 8.8  | 131       |
| 11 | Distinguishing direct versus indirect transcription factor–DNA interactions. Genome Research, 2009,<br>19, 2090-2100.                       | 5.5  | 128       |
| 12 | Computational Inference of Neural Information Flow Networks. PLoS Computational Biology, 2006, 2, e161.                                     | 3.2  | 124       |
| 13 | Glucocorticoid receptor recruits to enhancers and drives activation by motif-directed binding.<br>Genome Research, 2018, 28, 1272-1284.     | 5.5  | 102       |
| 14 | Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science, 2014, 346, 1256780.                      | 12.6 | 97        |
| 15 | An ensemble model of competitive multi-factor binding of the genome. Genome Research, 2009, 19, 2101-2112.                                  | 5.5  | 94        |
| 16 | INFORMATIVE STRUCTURE PRIORS: JOINT LEARNING OF DYNAMIC REGULATORY NETWORKS FROM MULTIPLE TYPES OF DATA. , 2004, , .                        |      | 87        |
| 17 | A Nucleosome-Guided Map of Transcription Factor Binding Sites in Yeast. PLoS Computational Biology, 2007, 3, e215.                          | 3.2  | 85        |
| 18 | Verification of systems biology research in the age of collaborative competition. Nature<br>Biotechnology, 2011, 29, 811-815.               | 17.5 | 83        |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes and Development, 2015, 29, 212-224.                                | 5.9  | 82        |
| 20 | Combining location and expression data for principled discovery of genetic regulatory network models. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2002, , 437-49. | 0.7  | 63        |
| 21 | Automated constraint-based nucleotide sequence selection for DNA computation. BioSystems, 1999, 52, 227-235.                                                                               | 2.0  | 56        |
| 22 | Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors. Developmental Cell, 2016, 39, 585-596.       | 7.0  | 54        |
| 23 | Informative priors based on transcription factor structural class improve de novo motif discovery.<br>Bioinformatics, 2006, 22, e384-e392.                                                 | 4.1  | 48        |
| 24 | Mapping nucleosome positions using DNase-seq. Genome Research, 2016, 26, 351-364.                                                                                                          | 5.5  | 46        |
| 25 | Finding regulatory DNA motifs using alignment-free evolutionary conservation information. Nucleic<br>Acids Research, 2010, 38, e90-e90.                                                    | 14.5 | 38        |
| 26 | Sequence features of DNA binding sites reveal structural class of associated transcription factor.<br>Bioinformatics, 2006, 22, 157-163.                                                   | 4.1  | 33        |
| 27 | Joint Classifier and Feature Optimization for Comprehensive Cancer Diagnosis Using Gene Expression<br>Data. Journal of Computational Biology, 2004, 11, 227-242.                           | 1.6  | 32        |
| 28 | A Probabilistic Model for Cell Cycle Distributions in Synchrony Experiments. Cell Cycle, 2007, 6, 478-488.                                                                                 | 2.6  | 29        |
| 29 | Nucleosome Occupancy Information Improves de novo Motif Discovery. , 2007, , 107-121.                                                                                                      |      | 23        |
| 30 | Identification of Tat-SF1 cellular targets by exon array analysis reveals dual roles in transcription and splicing. Rna, 2011, 17, 665-674.                                                | 3.5  | 16        |
| 31 | INFLUENCE OF NETWORK TOPOLOGY AND DATA COLLECTION ON NETWORK INFERENCE. , 2002, , .                                                                                                        |      | 15        |
| 32 | Characterization of dependencies between growth and division in budding yeast. Journal of the Royal<br>Society Interface, 2017, 14, 20160993.                                              | 3.4  | 13        |
| 33 | INTRINSIC DISORDER WITHIN AND FLANKING THE DNA-BINDING DOMAINS OF HUMAN TRANSCRIPTION FACTORS. , 2011, , .                                                                                 |      | 12        |
| 34 | Learning protein–DNA interaction landscapes by integrating experimental data through<br>computational models. Bioinformatics, 2014, 30, 2868-2874.                                         | 4.1  | 12        |
| 35 | Local nucleosome dynamics and eviction following a double-strand break are reversible by<br>NHEJ-mediated repair in the absence of DNA replication. Genome Research, 2021, 31, 775-788.    | 5.5  | 10        |
| 36 | A Fast, Alignment-Free, Conservation-Based Method for Transcription Factor Binding Site Discovery. ,<br>2008, , 98-111.                                                                    |      | 10        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A branching process model for flow cytometry and budding index measurements in cell synchrony experiments. Annals of Applied Statistics, 2009, 3, 1521-1541.                                           | 1.1  | 9         |
| 38 | USING DNA DUPLEX STABILITY INFORMATION FOR TRANSCRIPTION FACTOR BINDING SITE DISCOVERY. , 2007, , .                                                                                                    |      | 9         |
| 39 | Branching process deconvolution algorithm reveals a detailed cell-cycle transcription program.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E968-77. | 7.1  | 8         |
| 40 | Linking the dynamics of chromatin occupancy and transcription with predictive models. Genome Research, 2021, 31, 1035-1046.                                                                            | 5.5  | 7         |
| 41 | FINDING DIAGNOSTIC BIOMARKERS IN PROTEOMIC SPECTRA. , 2005, , .                                                                                                                                        |      | 6         |
| 42 | RoboCOP: jointly computing chromatin occupancy profiles for numerous factors from chromatin accessibility data. Nucleic Acids Research, 2021, 49, 7925-7938.                                           | 14.5 | 3         |
| 43 | Cell-Cycle–Dependent Chromatin Dynamics at Replication Origins. Genes, 2021, 12, 1998.                                                                                                                 | 2.4  | 3         |
| 44 | Session Introduction. , 2004, , .                                                                                                                                                                      |      | 1         |
| 45 | Joint learning from multiple types of genomic data. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2005, , 445-6.                                                                | 0.7  | 1         |
| 46 | Profiling the quantitative occupancy of myriad transcription factors across conditions by modeling chromatin accessibility data. Genome Research, 2022, 32, 1183-1198.                                 | 5.5  | 1         |
| 47 | Cell-cycle phenotyping with conditional random fields: A case study in Saccharomyces cerevisiae. , 2013, , .                                                                                           |      | 0         |
| 48 | Session Introduction. , 2002, , .                                                                                                                                                                      |      | 0         |
| 49 | A nucleosome-guided map of transcription factor binding sites in yeast. PLoS Computational Biology, 2005, preprint, e215.                                                                              | 3.2  | 0         |
| 50 | RoboCOP: Multivariate State Space Model Integrating Epigenomic Accessibility Data to Elucidate<br>Genome-Wide Chromatin Occupancy. Lecture Notes in Computer Science, 2020, 12074, 136-151.            | 1.3  | 0         |