
Chris Vervaet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3013677/publications.pdf Version: 2024-02-01

CHDIS VEDVAET

#	Article	IF	CITATIONS
1	Technological, Biochemical and Microbiological Evaluation of Dehydrated Pleurotus ostreatus Powder for Nutraceutical Applications. Current Nutrition and Food Science, 2022, 18, .	0.6	1
2	A multivariate methodology for material sparing characterization and blend design in drug product development. International Journal of Pharmaceutics, 2022, 621, 121801.	5.2	5
3	3D-Printed Gentamicin-Releasing Poly-Îμ-Caprolactone Composite Prevents Fracture-Related Staphylococcus aureus Infection in Mice. Pharmaceutics, 2022, 14, 1363.	4.5	9
4	The Influence of Equipment Design and Process Parameters on Granule Breakage in a Semi-Continuous Fluid Bed Dryer after Continuous Twin-Screw Wet Granulation. Pharmaceutics, 2021, 13, 293.	4.5	15
5	Identifying Critical Binder Attributes to Facilitate Binder Selection for Efficient Formulation Development in a Continuous Twin Screw Wet Granulation Process. Pharmaceutics, 2021, 13, 210.	4.5	6
6	Histamine H ₁ and H ₂ receptors are essential transducers of the integrative exercise training response in humans. Science Advances, 2021, 7, .	10.3	19
7	Continuous Twin Screw Granulation: A Review of Recent Progress and Opportunities in Formulation and Equipment Design. Pharmaceutics, 2021, 13, 668.	4.5	26
8	Can Fused Deposition Modelling Enable the Manufacture of Uniform and Precise Dose Tablets?. Medical Sciences Forum, 2021, 5, 3.	0.5	0
9	Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing?. International Journal of Pharmaceutics, 2021, 607, 120922.	5.2	25
10	Continuous twin screw granulation: Impact of microcrystalline cellulose batch-to-batch variability during granulation and drying – A QbD approach. International Journal of Pharmaceutics: X, 2021, 3, 100077.	1.6	6
11	Development of a 3D-Printed Dosing Platform to Aid in Zolpidem Withdrawal Therapy. Pharmaceutics, 2021, 13, 1684.	4.5	14
12	A NIR-Based Study of Desorption Kinetics during Continuous Spin Freeze-Drying. Pharmaceutics, 2021, 13, 2168.	4.5	4
13	Spin Freezing and Its Impact on Pore Size, Tortuosity and Solid State. Pharmaceutics, 2021, 13, 2126.	4.5	11
14	Development and Application of a Mechanistic Cooling and Freezing Model of the Spin Freezing Step within the Framework of Continuous Freeze-Drying. Pharmaceutics, 2021, 13, 2076.	4.5	7
15	Influence of Print Settings on the Critical Quality Attributes of Extrusion-Based 3D-Printed Caplets: A Quality-by-Design Approach. Pharmaceutics, 2021, 13, 2068.	4.5	14
16	Continuous twin screw granulation: Influence of process and formulation variables on granule quality attributes of model formulations. International Journal of Pharmaceutics, 2020, 576, 118981.	5.2	36
17	In-Situ X-ray Imaging Of Sublimating Spin-Frozen Solutions. Materials, 2020, 13, 2953.	2.9	2
18	4D Micro-Computed X-ray Tomography as a Tool to Determine Critical Process and Product Information of Spin Freeze-Dried Unit Doses. Pharmaceutics, 2020, 12, 430.	4.5	12

CHRIS VERVAET

#	Article	IF	CITATIONS
19	Production of Drug Delivery Systems Using Fused Filament Fabrication: A Systematic Review. Pharmaceutics, 2020, 12, 517.	4.5	53
20	Continuous twin screw granulation: A complex interplay between formulation properties, process settings and screw design. International Journal of Pharmaceutics, 2020, 576, 119004.	5.2	44
21	Continuous twin screw granulation: Impact of binder addition method and surfactants on granulation of a high-dosed, poorly soluble API. International Journal of Pharmaceutics, 2020, 577, 119068.	5.2	14
22	Predicting and Testing Bioavailability of Magnesium Supplements. Nutrients, 2019, 11, 1663.	4.1	26
23	Dual chamber cartridges in a continuous pharmaceutical freeze-drying concept: Determination of the optimal dynamic infrared heater temperature during primary drying. International Journal of Pharmaceutics, 2019, 570, 118631.	5.2	10
24	The relevance of shear, sedimentation and diffusion during spin freezing, as potential first step of a continuous freeze-drying process for unit doses. International Journal of Pharmaceutics, 2018, 539, 1-10.	5.2	13
25	Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying. Analytical Chemistry, 2018, 90, 4354-4362.	6.5	23
26	Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses. Analytical Chemistry, 2018, 90, 13591-13599.	6.5	24
27	A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes. International Journal of Pharmaceutics, 2018, 549, 415-435.	5.2	72
28	Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 11-21.	4.3	19
29	Modelling the primary drying step for the determination of the optimal dynamic heating pad temperature in a continuous pharmaceutical freeze-drying process for unit doses. International Journal of Pharmaceutics, 2017, 532, 185-193.	5.2	14
30	Pharmacokinetic analysis of modified-release metoprolol formulations: An interspecies comparison. European Journal of Pharmaceutical Sciences, 2017, 97, 135-142.	4.0	2
31	Blend uniformity evaluation during continuous mixing in a twin screw granulator by in-line NIR using a moving F-test. Analytica Chimica Acta, 2016, 935, 213-223.	5.4	29
32	Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 249-262.	4.3	47
33	Development of a process map: A step towards a regime map for steady-state high shear wet twin screw granulation. Powder Technology, 2016, 300, 73-82.	4.2	37
34	Process Analytical Technology for continuous manufacturing of solid-dosage forms. TrAC - Trends in Analytical Chemistry, 2015, 67, 159-166.	11.4	126
35	Evaluation of an in-line particle imaging tool for monitoring twin-screw granulation performance. Powder Technology, 2015, 285, 80-87.	4.2	22
36	Impact of microcrystalline cellulose material attributes: A case study on continuous twin screw granulation. International Journal of Pharmaceutics, 2015, 478, 705-717.	5.2	53

CHRIS VERVAET

#	Article	IF	CITATIONS
37	Influence of raw material properties upon critical quality attributes of continuously produced granules and tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 252-263.	4.3	70
38	Distribution of binder in granules produced by means of twin screw granulation. International Journal of Pharmaceutics, 2014, 462, 8-10.	5.2	21
39	NIR spectroscopic method for the in-line moisture assessment during drying in a six-segmented fluid bed dryer of a continuous tablet production line: Validation of quantifying abilities and uncertainty assessment. Journal of Pharmaceutical and Biomedical Analysis, 2014, 100, 21-27.	2.8	36
40	Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 616-628.	4.3	39
41	Real-time assessment of critical quality attributes of a continuous granulation process. Pharmaceutical Development and Technology, 2013, 18, 85-97.	2.4	94
42	Optimization of Drug Delivery Systems for Intraperitoneal Therapy to Extend the Residence Time of the Chemotherapeutic Agent. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	59
43	Prediction of quality attributes of continuously produced granules using complementary pat tools. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 429-436.	4.3	64
44	Effect of disintegrants on the properties of multiparticulate tablets comprising starch pellets and excipient granules. International Journal of Pharmaceutics, 2012, 422, 310-317.	5.2	36
45	In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via extrusion/spheronisation. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 302-312.	4.3	32
46	Continuous granulation in the pharmaceutical industry. Chemical Engineering Science, 2005, 60, 3949-3957.	3.8	260