
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3013066/publications.pdf Version: 2024-02-01

FEL DINC

#	Article	IF	CITATIONS
1	Coordinated Use of Smart Inverters With Legacy Voltage Regulating Devices in Distribution Systems With High Distributed PV Penetration—Increase CVR Energy Savings. IEEE Transactions on Smart Grid, 2023, 14, 1804-1813.	9.0	30
2	Deep Reinforcement Learning Enabled Physical-Model-Free Two-Timescale Voltage Control Method for Active Distribution Systems. IEEE Transactions on Smart Grid, 2022, 13, 149-165.	9.0	36
3	Coordinated Inverter Control to Increase Dynamic PV Hosting Capacity: A Real-Time Optimal Power Flow Approach. IEEE Systems Journal, 2022, 16, 1933-1944.	4.6	11
4	Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning. Applied Energy, 2022, 306, 117982.	10.1	30
5	On Vulnerability and Resilience of Cyber-Physical Power Systems: A Review. IEEE Systems Journal, 2022, 16, 2367-2378.	4.6	25
6	A Network-Aware Distributed Energy Resource Aggregation Framework for Flexible, Cost-Optimal, and Resilient Operation. IEEE Transactions on Smart Grid, 2022, 13, 1213-1224.	9.0	12
7	Self-Organizing Map-Based Resilience Quantification and Resilient Control of Distribution Systems Under Extreme Events. IEEE Transactions on Smart Grid, 2022, 13, 1923-1937.	9.0	14
8	Integration of Utility Distributed Energy Resource Management System and Aggregators for Evolving Distribution System Operators. Journal of Modern Power Systems and Clean Energy, 2022, 10, 277-285.	5.4	22
9	DERMS Online: A New Voltage Sensitivity-Enabled Feedback Optimization Framework. , 2022, , .		2
10	A Hybrid Data-Driven and Model-Based Anomaly Detection Scheme for DER Operation. , 2022, , .		0
11	Evaluating the Curtailment Risk of Non-Firm Utility-Scale Solar Photovoltaic Plants under a Novel Last-In First-Out Principle of Access Interconnection Agreement. Energies, 2021, 14, 1463.	3.1	2
12	Distributed generator-based distribution system service restoration strategy and model-free control methods. Global Energy Interconnection, 2021, 4, 126-135.	2.3	2
13	Hierarchical Distribution System Adaptive Restoration With Diverse Distributed Energy Resources. IEEE Transactions on Sustainable Energy, 2021, 12, 1347-1359.	8.8	21
14	Collaborative Distribution System Restoration Planning and Real-Time Dispatch Considering Behind-the-Meter DERS. IEEE Transactions on Power Systems, 2021, 36, 3629-3644.	6.5	21
15	Attention Enabled Multi-Agent DRL for Decentralized Volt-VAR Control of Active Distribution System Using PV Inverters and SVCs. IEEE Transactions on Sustainable Energy, 2021, 12, 1582-1592.	8.8	68
16	Global Sensitivity Analysis of Large Distribution System With PVs Using Deep Gaussian Process. IEEE Transactions on Power Systems, 2021, 36, 4888-4891.	6.5	4
17	Voltage Regulation Performance Evaluation of Distributed Energy Resource Management via Advanced Hardware-in-the-Loop Simulation. Energies, 2021, 14, 6734.	3.1	17
18	Modeling the Strategic Behavior of an Active Distribution Network in the ISO Markets. , 2021, , .		2

#	Article	IF	CITATIONS
19	Data-driven Global Sensitivity Analysis of Three- Phase Distribution System with PVs. , 2021, , .		Ο
20	Decentralized Voltage Control of Large-Scale Distribution System with PVs Based on MADRL. , 2021, , .		0
21	Data-Driven Distribution System Coordinated PV Inverter Control Using Deep Reinforcement Learning. , 2021, , .		1
22	A techno-economic comparison of traditional upgrades, volt-var controls, and coordinated distributed energy resource management systems for integration of distributed photovoltaic resources. International Journal of Electrical Power and Energy Systems, 2020, 123, 106222.	5.5	24
23	A Model-Predictive Hierarchical-Control Framework for Aggregating Residential DERs to Provide Grid Regulation Services. , 2020, , .		2
24	Optimal Energy Dispatch of Distributed PVs for the Next Generation of Distribution Management Systems. IEEE Open Access Journal of Power and Energy, 2020, 7, 287-295.	3.4	22
25	Quantification of Load Flexibility in Residential Buildings Using Home Energy Management Systems. , 2020, , .		9
26	An Analysis of Post Attack Impacts and Effects of Learning Parameters on Vulnerability Assessment of Power Grid. , 2020, , .		3
27	Performance Evaluation of Distributed Energy Resource Management via Advanced Hardware-in-the-Loop Simulation. , 2020, , .		22
28	Dynamic Restoration Strategy for Distribution System Resilience Enhancement. , 2020, , .		5
29	Identification of Worst Impact Zones for Power Grids During Extreme Weather Events Using Q-learning. , 2020, , .		4
30	MPC-Based Local Voltage Control Strategy of DGs in Active Distribution Networks. IEEE Transactions on Sustainable Energy, 2020, 11, 2911-2921.	8.8	48
31	Q-Learning-Based Impact Assessment of Propagating Extreme Weather on Distribution Grids. , 2020, , .		6
32	The Impact of Behind-the-Meter Heterogeneous Distributed Energy Resources on Distribution Grids. , 2020, , .		3
33	Post-Disturbance Dynamic Distribution System Restoration with DGs and Mobile Resources. , 2020, , .		2
34	Robust Operation of Soft Open Points in Active Distribution Networks With High Penetration of Photovoltaic Integration. IEEE Transactions on Sustainable Energy, 2019, 10, 280-289.	8.8	155
35	Quasi-Static Time-Series PV Hosting Capacity Methodology and Metrics. , 2019, , .		22
36	Beyond Hosting Capacity: Using Shortest-Path Methods to Minimize Upgrade Cost Pathways. IEEE Journal of Photovoltaics, 2019, 9, 1051-1056.	2.5	6

#	Article	IF	CITATIONS
37	Data-Enhanced Hierarchical Control to Improve Distribution Voltage with Extremely High PV Penetration. , 2019, , .		6
38	Coordinated Use of Smart Inverters with Legacy Voltage Regulating Devices in Distribution Systems with High Distributed PV Penetration—Increase CVR Energy Savings. , 2019, , .		3
39	On Per-Phase Topology Control and Switching in Emerging Distribution Systems. , 2019, , .		0
40	Hierarchical Distributed Voltage Regulation in Networked Autonomous Grids. , 2019, , .		14
41	Optimal Operation of Soft Open Points in Active Distribution Networks Under Three-Phase Unbalanced Conditions. IEEE Transactions on Smart Grid, 2019, 10, 380-391.	9.0	121
42	On Distributed PV Hosting Capacity Estimation, Sensitivity Study and Improvement. , 2018, , .		2
43	Hidden Moving Target Defense against False Data Injection in Distribution Network Reconfiguration. , 2018, , .		18
44	Understanding the Impact of Electric Water Heater Control on the Grid. , 2018, , .		1
45	Sequential Mitigation Solutions to Enable Distributed PV Grid Integration. , 2018, , .		5
46	A Transparent Translation from Legacy System Model into Common Information Model. , 2018, , .		3
47	On Per-Phase Topology Control and Switching in Emerging Distribution Systems. IEEE Transactions on Power Delivery, 2018, 33, 2373-2383.	4.3	7
48	A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks. Applied Energy, 2018, 228, 2024-2036.	10.1	70
49	Leveraging Standards to Create an Open Platform for the Development of Advanced Distribution Applications. IEEE Access, 2018, 6, 37361-37370.	4.2	36
50	Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point. IEEE Transactions on Sustainable Energy, 2017, 8, 1430-1442.	8.8	250
51	On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement. IEEE Transactions on Sustainable Energy, 2017, 8, 1010-1020.	8.8	194
52	An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks. Applied Energy, 2017, 208, 986-995.	10.1	95
53	Application of autonomous smart inverter Volt-VAR function for voltage reduction energy savings and power quality in electric distribution systems. , 2017, , .		23
54	Methods to determine recommended feeder-wide advanced inverter settings for improving distribution system performance. , 2016, , .		24

#	Article	IF	CITATIONS
55	Voltage support study of smart PV inverters on a high-photovoltaic penetration utility distribution feeder. , 2016, , .		24
56	Distribution-connected PV's response to voltage sags at transmission-scale. , 2016, , .		7
57	Technologies to increase PV hosting capacity in distribution feeders. , 2016, , .		34
58	Improving advanced inverter control convergence in distribution power flow. , 2016, , .		3
59	Locational sensitivity investigation on PV hosting capacity and fast track PV screening. , 2016, , .		14