
Douglas S Domingues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3012941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA-Seq differential expression analysis: An extended review and a software tool. PLoS ONE, 2017, 12, e0190152.	2.5	451
2	Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses, 2022, 2, 113-135.	4.8	149
3	The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Molecular Biology Reports, 2013, 40, 3269-3279.	2.3	134
4	Nitric Oxide Mediates the Hormonal Control of Crassulacean Acid Metabolism Expression in Young Pineapple Plants. Plant Physiology, 2010, 152, 1971-1985.	4.8	80
5	The Biotechnology Roadmap for Sugarcane Improvement. Tropical Plant Biology, 2010, 3, 75-87.	1.9	62
6	Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genomics, 2012, 13, 137.	2.8	57
7	Genome-wide association study reveals candidate genes influencing lipids and diterpenes contents in Coffea arabica L. Scientific Reports, 2018, 8, 465.	3.3	53
8	Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants. Briefings in Bioinformatics, 2019, 20, 682-689.	6.5	53
9	Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiologiae Plantarum, 2014, 36, 2309-2319.	2.1	52
10	Nitrogen Starvation, Salt and Heat Stress in Coffee (Coffea arabica L.): Identification and Validation of New Genes for qPCR Normalization. Molecular Biotechnology, 2013, 53, 315-325.	2.4	42
11	Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genetics and Molecular Biology, 2015, 38, 182-190.	1.3	40
12	Transcriptome Analysis of Leaves, Flowers and Fruits Perisperm of Coffea arabica L. Reveals the Differential Expression of Genes Involved in Raffinose Biosynthesis. PLoS ONE, 2017, 12, e0169595.	2.5	35
13	A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genetics, 2012, 13, 51.	2.7	34
14	NCED expression is related to increased ABA biosynthesis and stomatal closure under aluminum stress. Environmental and Experimental Botany, 2021, 185, 104404.	4.2	33
15	Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica. Molecular Genetics and Genomics, 2014, 289, 951-963.	2.1	30
16	The Terrestrial Carnivorous Plant Utricularia reniformis Sheds Light on Environmental and Life-Form Genome Plasticity. International Journal of Molecular Sciences, 2020, 21, 3.	4.1	30
17	MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors. Briefings in Bioinformatics, 2022, 23, .	6.5	30
18	PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Functional and Integrative Genomics, 2016, 16, 235-242.	3.5	29

#	Article	IF	CITATIONS
19	Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biology, 2015, 15, 198.	3.6	28
20	An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Functional and Integrative Genomics, 2019, 19, 151-169.	3.5	28
21	Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Molecular Genetics and Genomics, 2016, 291, 323-336.	2.1	26
22	Thermoperiod affects the diurnal cycle of nitrate reductase expression and activity in pineapple plants by modulating the endogenous levels of cytokinins. Physiologia Plantarum, 2009, 137, 201-212.	5.2	23
23	Terminal-Repeat Retrotransposons with GAG Domain in Plant Genomes: A New Testimony on the Complex World of Transposable Elements. Genome Biology and Evolution, 2015, 7, 493-504.	2.5	23
24	TERL: classification of transposable elements by convolutional neural networks. Briefings in Bioinformatics, 2021, 22, .	6.5	22
25	Feature extraction approaches for biological sequences: a comparative study of mathematical features. Briefings in Bioinformatics, 2021, 22, .	6.5	22
26	Inpactor, Integrated and Parallel Analyzer and Classifier of LTR Retrotransposons and Its Application for Pineapple LTR Retrotransposons Diversity and Dynamics. Biology, 2018, 7, 32.	2.8	21
27	Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Plant Physiology and Biochemistry, 2017, 111, 340-347.	5.8	19
28	PlaNC-TE: a comprehensive knowledgebase of non-coding RNAs and transposable elements in plants. Database: the Journal of Biological Databases and Curation, 2018, 2018, 1-7.	3.0	19
29	Low root PIP1-1 and PIP2 aquaporins expression could be related to reduced hydration in â€~Rangpur' lime plants exposed to aluminium. Functional Plant Biology, 2020, 47, 112.	2.1	18
30	ceRNAs in plants: computational approaches and associated challenges for target mimic research. Briefings in Bioinformatics, 2017, 19, 1273-1289.	6.5	16
31	mirtronDB: a mirtron knowledge base. Bioinformatics, 2019, 35, 3873-3874.	4.1	16
32	Population structure and genetic relationships between Ethiopian and Brazilian Coffea arabica genotypes revealed by SSR markers. Genetica, 2019, 147, 205-216.	1.1	14
33	Functional annotation and distribution overview of RNA families in 27ÂStreptococcus agalactiae genomes. BMC Genomics, 2018, 19, 556.	2.8	11
34	Decarboxylation mechanisms of C4 photosynthesis in Saccharum spp.: increased PEPCK activity under water-limiting conditions. BMC Plant Biology, 2019, 19, 144.	3.6	11
35	Boron transport in Eucalyptus. 2. Identification in silico of a putative boron transporter for xylem loading in eucalypt. Genetics and Molecular Biology, 2005, 28, 625-629.	1.3	11
36	An Atlas of Plant Transposable Elements. F1000Research, 2021, 10, 1194.	1.6	11

DOUGLAS S DOMINGUES

#	Article	IF	CITATIONS
37	Genome-wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genetics and Molecular Biology, 2017, 40, 346-359.	1.3	10
38	Hexanoic acid: a new potential substitute for copperâ€based agrochemicals against citrus canker. Journal of Applied Microbiology, 2021, 131, 2488-2499.	3.1	10
39	Differentially Accumulated Proteins in <i>Coffea arabica</i> Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size. Journal of Agricultural and Food Chemistry, 2016, 64, 1635-1647.	5.2	9
40	A Novel Decomposing Model With Evolutionary Algorithms for Feature Selection in Long Non-Coding RNAs. IEEE Access, 2020, 8, 181683-181697.	4.2	9
41	Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L. Genetics and Molecular Research, 2012, 11, 3186-3197.	0.2	9
42	Construction and characterization of a BAC library from the Coffea arabica genotype Timor Hybrid CIFC 832/2. Genetica, 2013, 141, 217-226.	1.1	8
43	Genome-wide analysis of EgEVE_1, a transcriptionally active endogenous viral element associated to small RNAs in Eucalyptus genomes. Genetics and Molecular Biology, 2017, 40, 217-225.	1.3	8
44	Transcriptional patterns of <i>Coffea arabica</i> L. nitrate reductase, glutamine and asparagine synthetase genes are modulated under nitrogen suppression and coffee leaf rust. PeerJ, 2020, 8, e8320.	2.0	8
45	Mutator System Derivatives Isolated from Sugarcane Genome Sequence. Tropical Plant Biology, 2012, 5, 233-243.	1.9	7
46	Distribution of Divo in Coffea genomes, a poorly described family of angiosperm LTR-Retrotransposons. Molecular Genetics and Genomics, 2017, 292, 741-754.	2.1	7
47	Low-Copy Genes in Terpenoid Metabolism: The Evolution and Expression of MVK and DXR Genes in Angiosperms. Plants, 2020, 9, 525.	3.5	6
48	Genome-Wide Screening and Characterization of Non-Coding RNAs in Coffea canephora. Non-coding RNA, 2020, 6, 39.	2.6	5
49	Identification of the transcriptionally active cytochrome P450 repertoire in Coffea arabica. Genetics and Molecular Research, 2015, 14, 2399-2412.	0.2	4
50	Elevated [CO2] Mitigates Drought Effects and Increases Leaf 5-O-Caffeoylquinic Acid and Caffeine Concentrations During the Early Growth of Coffea Arabica Plants. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	4
51	The urea transporter DUR3 is differentially regulated by abiotic and biotic stresses in coffee plants. Physiology and Molecular Biology of Plants, 2021, 27, 203-212.	3.1	3
52	Identificação de marcador RAPD e SCAR relacionados ao caractere florescimento precoce em <i>Eucalyptus grandis</i> Ciencia Florestal, 2010, 16, 251-260.	0.3	3
53	Identification of potential transcriptionally active Copia LTR retrotransposons in Eucalyptus. BMC Proceedings, 2011, 5, .	1.6	1
54	Computational Analysis of and CircRNAs in. Methods in Molecular Biology, 2021, 2362, 147-172.	0.9	1

#	Article	IF	CITATIONS
55	Identificação e Caracterização de Microssatélites de Coffea arabica a partir de dados de sequenciamento de RNA e de BACs. BBR - Biochemistry and Biotechnology Reports, 2013, 2, 186.	0.0	1
56	Transcriptome Analyses of Leaves Reveal That Hexanoic Acid Priming Differentially Regulate Gene Expression in Contrasting Coffea arabica Cultivars. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	1
57	How candidate genes respond to aluminum toxicity in Citrus x limonia Osbeck?. Theoretical and Experimental Plant Physiology, 0, , .	2.4	1
58	Structure analyses and expression pattern of the ERF transcription factor family in Coffea arabica. Journal of Botanical Research, 2021, 3, .	0.2	0
59	CoffeebEST: an integrated resource for Coffea spp expressed sequence tags. Genetics and Molecular Research, 2014, 13, 10913-10920.	0.2	Ο
60	mirtronDB: a mirtron knowledge base. , 0, , .		0