
Enxian Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3012563/publications.pdf Version: 2024-02-01

ΕΝΥΙΛΝ ΥΠΛΝ

#	Article	IF	CITATIONS
1	Synergistic effects of second metals on performance of (Co, Ag, Cu)-doped Pd/Al2O3 catalysts for 2-ethyl-anthraquinone hydrogenation. Journal of Catalysis, 2017, 347, 79-88.	6.2	51
2	Promotion on light olefins production through modulating the reaction pathways for n -pentane catalytic cracking over ZSM-5 based catalysts. Applied Catalysis A: General, 2017, 543, 51-60.	4.3	45
3	SO 4 2â^' /TiO 2 promotion on HZSM-5 for catalytic cracking of paraffin. Applied Catalysis A: General, 2017, 537, 12-23.	4.3	34
4	Effects of SBA-15 physicochemical properties on performance of Pd/SBA-15 catalysts in 2-ethyl-anthraquinone hydrogenation. Journal of Industrial and Engineering Chemistry, 2018, 66, 158-167.	5.8	34
5	One-pot synthesis of Pd nanoparticles on ordered mesoporous Al 2 O 3 for catalytic hydrogenation of 2-ethyl-anthraquinone. Applied Catalysis A: General, 2016, 525, 119-127.	4.3	32
6	NiCo2O4 nanoneedle-assembled hierarchical microflowers for highly selective oxidation of styrene. Catalysis Communications, 2018, 109, 71-75.	3.3	32
7	Synergic catalysis by a CuO-like phase and CuO for anaerobic dehydrogenation of 2,3-butanediol. Journal of Catalysis, 2020, 382, 256-268.	6.2	23
8	Aerobic oxidation of cyclohexane over metal-organic framework-derived Ce, Ni-modified Co3O4. Korean Journal of Chemical Engineering, 2020, 37, 1137-1148.	2.7	22
9	Covalent anchoring of <i>N</i> -hydroxyphthalimide on silica <i>via</i> robust imide bonds as a reusable catalyst for the selective aerobic oxidation of ethylbenzene to acetophenone. New Journal of Chemistry, 2021, 45, 13441-13450.	2.8	21
10	Boosting Creation of Oxygen Vacancies in Co-Co3O4 Homogeneous Hybrids for Aerobic Oxidation of Cyclohexane. Catalysis Letters, 2022, 152, 282-298.	2.6	19
11	Highly Efficient Dehydrogenation of 2,3-Butanediol Induced by Metal–Support Interface over Cu-SiO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 15716-15731.	6.7	18
12	A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al2O3 catalyst. Frontiers of Chemical Science and Engineering, 2017, 11, 177-184.	4.4	16
13	Role of normal/cyclo-alkane in hydrocarbons pyrolysis process and product distribution. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105130.	5.5	12
14	Density functional theory study of selective aerobic oxidation of cyclohexane: the roles of acetic acid and cobalt ion. Journal of Molecular Modeling, 2019, 25, 71.	1.8	11
15	Density Functional Theory Analysis of Anthraquinone Derivative Hydrogenation over Palladium Catalyst. ChemPhysChem, 2016, 17, 3974-3984.	2.1	9
16	Effects of porous oxide layer on performance of Pd-based monolithic catalysts for 2-ethylanthraquinone hydrogenation. Chinese Journal of Chemical Engineering, 2016, 24, 1570-1576.	3.5	6
17	Hydrogenation of Alkylanthraquinone Over Pore-Expanded and Channel-Shortened Pd/SBA-15. Transactions of Tianjin University, 2019, 25, 595-602.	6.4	6
18	Analysis of <i>n</i> -hexane, 1-hexene, cyclohexane and cyclohexene catalytic cracking over HZSM-5 zeolites: effects of molecular structure. Reaction Chemistry and Engineering, 2022, 7, 1762-1778.	3.7	6

ENXIAN YUAN

#	Article	IF	CITATIONS
19	Experiment and modeling of coke formation and catalyst deactivation in n-heptane catalytic cracking over HZSM-5 zeolites. Chinese Journal of Chemical Engineering, 2023, 55, 165-172.	3.5	6
20	Empirical modeling of normal/cyclo-alkanes pyrolysis to produce light olefins. Chinese Journal of Chemical Engineering, 2022, 42, 389-398.	3.5	5
21	Improving light absorption and photoelectrochemical performance of thin-film photoelectrode with a reflective substrate. RSC Advances, 2021, 11, 16600-16607.	3.6	5
22	Universality analysis of the reaction pathway and product distribution in C5-C10 n-alkanes pyrolysis. Journal of Analytical and Applied Pyrolysis, 2022, 162, 105451.	5.5	5
23	Roles of ethanol in coke formation and HZSM-5 deactivation during <i>n</i> -heptane catalytic cracking. New Journal of Chemistry, 2022, 46, 3916-3924.	2.8	4
24	Microbehavior mechanism of water mediator on palladium in catalytic hydrogenation of aromatic carbonyl: Enhancement of hydrogen shuttling and modification of electronic structure. Molecular Catalysis, 2021, 514, 111872.	2.0	2