Olivier R Seynnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3012529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties. Medicine and Science in Sports and Exercise, 2022, 54, 582-589.	0.2	19
2	Altered Gastrocnemius Contractile Behavior in Former Achilles Tendon Rupture Patients During Walking. Frontiers in Physiology, 2022, 13, 792576.	1.3	4
3	Effectiveness of individualized training based on force–velocity profiling on physical function in older men. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 1013-1025.	1.3	8
4	Effects of specific collagen peptide supplementation combined with resistance training on Achilles tendon properties. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 1131-1141.	1.3	9
5	Adaptations to explosive resistance training with partial range of motion are not inferior to full range of motion. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 1026-1035.	1.3	5
6	Recovery from Achilles Tendon Repair: A Combination of Postsurgery Outcomes and Insufficient Remodeling of Muscle and Tendon. Medicine and Science in Sports and Exercise, 2021, 53, 1356-1366.	0.2	7
7	Strength training and protein supplementation improve muscle mass, strength, and function in mobility-limited older adults: a randomized controlled trial. Aging Clinical and Experimental Research, 2020, 32, 605-616.	1.4	13
8	Architectural Changes in Superficial and Deep Compartments of the Tibialis Anterior During Electrical Stimulation Over Different Sites. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2557-2565.	2.7	4
9	Mechanical and Material Tendon Properties in Patients With Proximal Patellar Tendinopathy. Frontiers in Physiology, 2020, 11, 704.	1.3	22
10	Automated Characterization of Muscle Architectural Variation in Ultrasound Images. , 2020, , .		0
11	Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images. Computer Methods and Programs in Biomedicine, 2020, 196, 105583.	2.6	36
12	Musculoskeletal adaptations to strength training in frail elderly: a matter of quantity or quality?. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 663-677.	2.9	25
13	Simple Muscle Architecture Analysis (SMA): An ImageJ macro tool to automate measurements in B-mode ultrasound scans. PLoS ONE, 2020, 15, e0229034.	1.1	42
14	Commentaries on Viewpoint: Distinct modalities of eccentric exercise: different recipes, not the same dish. Journal of Applied Physiology, 2019, 127, 884-891.	1.2	10
15	Isokinetic resistance training combined with eccentric overload improves athletic performance and induces muscle hypertrophy in young ice hockey players. Journal of Science and Medicine in Sport, 2019, 22, 821-826.	0.6	14
16	Distinct muscle-tendon interaction during running at different speeds and in different loading conditions. Journal of Applied Physiology, 2019, 127, 246-253.	1.2	21
17	Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training. Journal of Applied Physiology, 2019, 127, 1660-1667.	1.2	43
18	Eccentric cycling does not improve cycling performance in amateur cyclists. PLoS ONE, 2019, 14, e0208452.	1.1	8

OLIVIER R SEYNNES

#	Article	IF	CITATIONS
19	Force–velocity profiling of sprinting athletes: single-run vs. multiple-run methods. European Journal of Applied Physiology, 2019, 119, 465-473.	1.2	14
20	Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running. PeerJ, 2019, 7, e6764.	0.9	21
21	Effects of tracking landmarks and tibial point of resistive force application on the assessment of patellar tendon mechanical properties in vivo. Journal of Biomechanics, 2018, 71, 176-182.	0.9	5
22	Specialized properties of the triceps surae muscleâ€ŧendon unit in professional ballet dancers. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2023-2034.	1.3	16
23	Sarcolab pilot study into skeletal muscle's adaptation to long-term spaceflight. Npj Microgravity, 2018, 4, 18.	1.9	62
24	Effect of Training-Induced Changes in Achilles Tendon Stiffness on Muscle–Tendon Behavior During Landing. Frontiers in Physiology, 2018, 9, 794.	1.3	29
25	Structure and function of human muscle fibres and muscle proteome in physically active older men. Journal of Physiology, 2017, 595, 4823-4844.	1.3	52
26	Training Strategies to Improve Muscle Power. Medicine and Science in Sports and Exercise, 2017, 49, 736-745.	0.2	32
27	Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task. Journal of Experimental Biology, 2017, 220, 4141-4149.	0.8	23
28	Sport-Specific Capacity to Use Elastic Energy in the Patellar and Achilles Tendons of Elite Athletes. Frontiers in Physiology, 2017, 8, 132.	1.3	29
29	Load specific patellar and Achilles tendon adaptation: Structural integrity or function?. Japanese Journal of Physical Fitness and Sports Medicine, 2017, 66, 77-77.	0.0	Ο
30	Are Sport-Specific Profiles of Tendon Stiffness and Cross-Sectional Area Determined by Structural or Functional Integrity?. PLoS ONE, 2016, 11, e0158441.	1.1	49
31	Vitamin <scp>C</scp> and <scp>E</scp> supplementation blunts increases in total lean body mass in elderly men after strength training. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 755-763.	1.3	82
32	Wholeâ€body vibration training induces hypertrophy of the human patellar tendon. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 902-910.	1.3	21
33	Local trauma in human patellar tendon leads to widespread changes in the tendon gene expression. Journal of Applied Physiology, 2016, 120, 1000-1010.	1.2	19
34	Hamstrings functional properties in athletes with high musculoâ€skeletal flexibility. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 659-665.	1.3	17
35	Immediate effects of whole body vibration on patellar tendon properties and knee extension torque. European Journal of Applied Physiology, 2016, 116, 553-561.	1.2	9
36	Effects of Heavy Strength Training on Running Performance and Determinants of Running Performance in Female Endurance Athletes. PLoS ONE, 2016, 11, e0150799.	1.1	42

OLIVIER R SEYNNES

#	Article	IF	CITATIONS
37	Single muscle fibre contractile properties differ between bodyâ€builders, power athletes and control subjects. Experimental Physiology, 2015, 100, 1331-1341.	0.9	37
38	Effect of Traditional and Resisted Sprint Training in Highly Trained Female Team Handball Players. International Journal of Sports Physiology and Performance, 2015, 10, 642-647.	1.1	18
39	Alpine Skiing With total knee ArthroPlasty (<scp>ASWAP</scp>): effect on tendon properties. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 67-73.	1.3	5
40	Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3Âweeks of unilateral lower limb suspension and active recovery. Journal of Physiology, 2015, 593, 5361-5385.	1.3	37
41	Alpine Skiing With total knee ArthroPlasty (<scp>ASWAP</scp>): muscular adaptations. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 26-32.	1.3	15
42	Effects of Increased Loading on In Vivo Tendon Properties. Medicine and Science in Sports and Exercise, 2015, 47, 1885-1895.	0.2	120
43	Ultrasound-based testing of tendon mechanical properties: a critical evaluation. Journal of Applied Physiology, 2015, 118, 133-141.	1.2	105
44	Influence of loading rate on patellar tendon mechanical properties in vivo. Clinical Biomechanics, 2014, 29, 323-329.	0.5	44
45	Skeletal muscle adaptations to physical inactivity and subsequent retraining in young men. Biogerontology, 2013, 14, 247-259.	2.0	57
46	Physiological and functional evaluation of healthy young and older men and women: design of the European MyoAge study. Biogerontology, 2013, 14, 325-337.	2.0	50
47	Costamere remodeling with muscle loading and unloading in healthy young men. Journal of Anatomy, 2013, 223, 525-536.	0.9	44
48	Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy. British Journal of Sports Medicine, 2013, 47, 862-868.	3.1	89
49	Effect of androgenic-anabolic steroids and heavy strength training on patellar tendon morphological and mechanical properties. Journal of Applied Physiology, 2013, 115, 84-89.	1.2	60
50	Increased Plin2 Expression in Human Skeletal Muscle Is Associated with Sarcopenia and Muscle Weakness. PLoS ONE, 2013, 8, e73709.	1.1	60
51	Human muscle fascicle behavior in agonist and antagonist isometric contractions. Muscle and Nerve, 2012, 45, 92-99.	1.0	20
52	Skeletal muscle remodeling in response to alpine skiing training in older individuals. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 23-28.	1.3	44
53	Loadâ€sensitive adhesion factor expression in the elderly with skiing: relation to fiber type and muscle strength. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 29-38.	1.3	21
54	Effect of alpine skiing training on tendon mechanical properties in older men and women. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 39-46.	1.3	24

OLIVIER R SEYNNES

#	Article	IF	CITATIONS
55	Increased Hâ€reflex excitability is not accompanied by changes in neural drive following 24 days of unilateral lower limb suspension. Muscle and Nerve, 2010, 42, 749-755.	1.0	21
56	On muscle, tendon and high heels. Journal of Experimental Biology, 2010, 213, 2582-2588.	0.8	103
57	Effects of Testosterone on Skeletal Muscle Architecture in Intermediate-Frail and Frail Elderly Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 1215-1219.	1.7	62
58	Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. Journal of Applied Physiology, 2009, 107, 523-530.	1.2	218
59	Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. European Journal of Applied Physiology, 2009, 105, 939-944.	1.2	153
60	Ageâ€related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. Journal of Physiology, 2009, 587, 211-217.	1.3	577
61	Whole muscle contractile parameters and thickness loss during 35-day bed rest. European Journal of Applied Physiology, 2008, 104, 409-414.	1.2	160
62	Effect of 5Âweeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. European Journal of Applied Physiology, 2008, 104, 401-407.	1.2	171
63	Early structural adaptations to unloading in the human calf muscles. Acta Physiologica, 2008, 193, 265-274.	1.8	63
64	Soleus T reflex modulation in response to spinal and tendinous adaptations to unilateral lower limb suspension in humans. Acta Physiologica, 2008, 194, 239-251.	1.8	21
65	The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. Journal of Physiology, 2008, 586, 97-106.	1.3	319
66	Neuromuscular Fatigue Profile in Endurance-Trained and Power-Trained Athletes. Medicine and Science in Sports and Exercise, 2007, 39, 149-158.	0.2	33
67	Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of Applied Physiology, 2007, 102, 368-373.	1.2	501
68	Time course of muscular, neural and tendinous adaptations to 23 day unilateral lowerâ€limb suspension in young men. Journal of Physiology, 2007, 583, 1079-1091.	1.3	224
69	The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. Journal of Physiology, 2007, 585, 241-251.	1.3	267
70	Bone loss from the human distal tibia epiphysis during 24 days of unilateral lower limb suspension. Journal of Physiology, 2006, 577, 331-337.	1.3	51
71	Force Steadiness in the Lower Extremities as an Independent Predictor of Functional Performance in Older Women. Journal of Aging and Physical Activity, 2005, 13, 395-408.	0.5	64
72	Effects of a physical activity program on postural stability in older people. Aging Clinical and Experimental Research, 2004, 16, 356-362.	1.4	49

#	Article	IF	CITATIONS
73	Physiological and Functional Responses to Low-Moderate Versus High-Intensity Progressive Resistance Training in Frail Elders. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, M503-M509.	1.7	216
74	Adapted physical activity in old age: Effects of a low-intensity training program on isokinetic power and fatigability. Aging Clinical and Experimental Research, 2002, 14, 491-498.	1.4	7