
Lisbet Haglund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3011994/publications.pdf Version: 2024-02-01

LISPET HACLUND

#	Article	IF	CITATIONS
1	Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain. Nature Communications, 2022, 13, 843.	12.8	62
2	Simple Fabrication and Enhanced Bioactivity of Bioglassâ€Poly(lacticâ€coâ€glycolic acid) Composite Scaffolds with Matrix Microporosity. Macromolecular Materials and Engineering, 2022, 307, .	3.6	4
3	Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. International Journal of Molecular Sciences, 2022, 23, 3993.	4.1	39
4	DNA Methylation in Degenerating Human Intervertebral Discs. Journal of Pain, 2022, 23, 38-39.	1.4	0
5	Optimizing Design Parameters of PLA 3D-Printed Scaffolds for Bone Defect Repair. Surgeries, 2022, 3, 162-174.	0.6	8
6	Neoepitope fragments as biomarkers for different phenotypes of intervertebral disc degeneration. JOR Spine, 2022, 5, .	3.2	2
7	Uncovering the secretome of mesenchymal stromal cells exposed to healthy, traumatic, and degenerative intervertebral discs: a proteomic analysis. Stem Cell Research and Therapy, 2021, 12, 11.	5.5	38
8	For whom the disc tolls: intervertebral disc degeneration, back pain and toll-like receptors. , 2021, 41, 355-369.		9
9	Toll-like receptor 2 induced senescence in intervertebral disc cells of patients with back pain can be attenuated by o-vanillin. Arthritis Research and Therapy, 2021, 23, 117.	3.5	17
10	Passive transfer of fibromyalgia symptoms from patients to mice. Journal of Clinical Investigation, 2021, 131, .	8.2	106
11	A Composite Lactide-Mineral 3D-Printed Scaffold for Bone Repair and Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 654518.	3.7	12
12	Inflammatory interactions between degenerated intervertebral discs and microglia: Implication of sphingosineâ€1â€phosphate signaling. Journal of Orthopaedic Research, 2020, 39, 1479-1495.	2.3	6
13	Tollâ€like receptor involvement in adolescent scoliotic facet joint degeneration. Journal of Cellular and Molecular Medicine, 2020, 24, 11355-11365.	3.6	7
14	TACAN Is an Ion Channel Involved in Sensing Mechanical Pain. Cell, 2020, 180, 956-967.e17.	28.9	120
15	Senotherapeutic drugs for human intervertebral disc degeneration and low back pain. ELife, 2020, 9, .	6.0	53
16	DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. ELife, 2020, 9, .	6.0	37
17	Advancements in 3D printed scaffolds to mimic matrix complexities for musculoskeletal repair. Current Opinion in Biomedical Engineering, 2019, 10, 142-148.	3.4	10
18	Interleukin-8 as a therapeutic target for chronic low back pain: Upregulation in human cerebrospinal fluid and pre-clinical validation with chronic reparixin in the SPARC-null mouse model. EBioMedicine, 2019, 43, 487-500.	6.1	39

LISBET HAGLUND

#	Article	IF	CITATIONS
19	Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro. ACS Applied Materials & Interfaces, 2019, 11, 15306-15315.	8.0	81
20	Curcumin and o-Vanillin Exhibit Evidence of Senolytic Activity in Human IVD Cells In Vitro. Journal of Clinical Medicine, 2019, 8, 433.	2.4	79
21	Low-dose zoledronate for the treatment of bone metastasis secondary to prostate cancer. Cancer Cell International, 2019, 19, 28.	4.1	14
22	Differential regulation of TRP channel gene and protein expression by intervertebral disc degeneration and back pain. Scientific Reports, 2019, 9, 18889.	3.3	19
23	Mesenchymal Stem Cell Homing Into Intervertebral Discs Enhances the Tie2-positive Progenitor Cell Population, Prevents Cell Death, and Induces a Proliferative Response. Spine, 2019, 44, 1613-1622.	2.0	27
24	Facet joint degeneration in adolescent idiopathic scoliosis. JOR Spine, 2018, 1, e1016.	3.2	13
25	Low back pain and disc degeneration are decreased following chronic toll-like receptor 4 inhibition in a mouse model. Osteoarthritis and Cartilage, 2018, 26, 1236-1246.	1.3	37
26	Thermoreversible hyaluronan-hydrogel and autologous nucleus pulposus cell delivery regenerates human intervertebral discs in an ex vivo, physiological organ culture model. , 2018, 36, 200-217.		26
27	(112) Toll-like receptors in intervertebral disc degeneration and Pain: from man to mouse. Journal of Pain, 2017, 18, S5.	1.4	0
28	Toll-like Receptor Activation Induces Degeneration of Human Intervertebral Discs. Scientific Reports, 2017, 7, 17184.	3.3	39
29	Comparative analysis in continuous expansion of bovine and human primary nucleus pulposus cells for tissue repair applications. , 2017, 33, 240-251.		20
30	(290) Toll-like receptor 2 regulates nerve growth factor through NF-kappaB and MAPK signaling in human intervertebral discs. Journal of Pain, 2016, 17, S48.	1.4	0
31	Nerve Growth Factor Is Regulated by Toll-Like Receptor 2 in Human Intervertebral Discs. Journal of Biological Chemistry, 2016, 291, 3541-3551.	3.4	49
32	Photocleavable Hydrogel-Coated Upconverting Nanoparticles: A Multifunctional Theranostic Platform for NIR Imaging and On-Demand Macromolecular Delivery. Journal of the American Chemical Society, 2016, 138, 1078-1083.	13.7	191
33	Dynamic loading, matrix maintenance and cell injection therapy of human intervertebral discs cultured in a bioreactor. , 2016, 31, 26-39.		26
34	Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus. Scientific Reports, 2015, 5, 15662.	3.3	53
35	3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration. International Journal of Molecular Sciences, 2015, 16, 15118-15135.	4.1	257
36	Real-time, non-invasive monitoring of hydrogel degradation using LiYF ₄ :Yb ³⁺ /Tm ³⁺ NIR-to-NIR upconverting nanoparticles. Nanoscale, 2015, 7, 11255-11262.	5.6	59

LISBET HAGLUND

#	Article	IF	CITATIONS
37	Tough, In-Situ Thermogelling, Injectable Hydrogels for Biomedical Applications. Macromolecular Bioscience, 2015, 15, 473-480.	4.1	27
38	Axial T1ï•MRI as a diagnostic imaging modality to quantify proteoglycan concentration in degenerative disc disease. European Spine Journal, 2015, 24, 2395-2401.	2.2	19
39	(266) TLR2 activation induces NGF gene and protein expression via NF-κB in human intervertebral disc cells. Journal of Pain, 2015, 16, S42.	1.4	0
40	The Inflammatory Milieu of the Degenerate Disc: Is Mesenchymal Stem Cell-based Therapy for Intervertebral Disc Repair a Feasible Approach?. Current Stem Cell Research and Therapy, 2015, 10, 317-328.	1.3	38
41	Organ Culture Bioreactors – Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy. Current Stem Cell Research and Therapy, 2015, 10, 339-352.	1.3	78
42	Mechanical Injury to Human Intervertebral Discs and Isolated Cells Initiates Events Implicated in Degeneration and Pain. Global Spine Journal, 2015, 5, s-0035-1554224-s-0035-1554224.	2.3	0
43	Low-Frequency High-Magnitude Mechanical Strain of Articular Chondrocytes Activates p38 MAPK and Induces Phenotypic Changes Associated with Osteoarthritis and Pain. International Journal of Molecular Sciences, 2014, 15, 14427-14441.	4.1	16
44	Painful, degenerating intervertebral discs upâ€regulate neurite sprouting and <scp>CGRP</scp> through nociceptive factors. Journal of Cellular and Molecular Medicine, 2014, 18, 1213-1225.	3.6	125
45	Link N is cleaved by human annulus fibrosus cells generating a fragment with retained biological activity. Journal of Orthopaedic Research, 2014, 32, 1189-1197.	2.3	7
46	High mechanical strain of primary intervertebral disc cells promotes secretion of inflammatory factors associated with disc degeneration and pain. Arthritis Research and Therapy, 2014, 16, R21.	3.5	122
47	Link N and Mesenchymal Stem Cells Can Induce Regeneration of the Early Degenerate Intervertebral Disc. Tissue Engineering - Part A, 2014, 20, 2942-2949.	3.1	45
48	Physiological Loading Can Restore the Proteoglycan Content in a Model of Early IVD Degeneration. PLoS ONE, 2014, 9, e101233.	2.5	42
49	Acute mechanical injury of the human intervertebral disc: link to degeneration and pain. , 2014, 28, 98-111.		91
50	Potential of Link-N to Stimulate Repair in the Degenerated Human Intervertebral Discs. Spine Journal, 2013, 13, S57-S58.	1.3	0
51	Inflammatory Mediators in Intervertebral Disk Degeneration and Discogenic Pain. Global Spine Journal, 2013, 3, 175-184.	2.3	164
52	Chondroadherin Fragmentation Mediated by the Protease HTRA1 Distinguishes Human Intervertebral Disc Degeneration from Normal Aging. Journal of Biological Chemistry, 2013, 288, 19280-19287.	3.4	39
53	The C-terminal Peptide of Chondroadherin Modulates Cellular Activity by Selectively Binding to Heparan Sulfate Chains. Journal of Biological Chemistry, 2013, 288, 995-1008.	3.4	21
54	Best Paper NASS 2013: Link-N can stimulate proteoglycan synthesis in the degenerated human intervertebral discs. , 2013, 26, 107-119.		40

LISBET HAGLUND

#	Article	IF	CITATIONS
55	The Effects of Chlorhexidine Graft Decontamination on Tendon Graft Collagen and Cell Viability. American Journal of Sports Medicine, 2012, 40, 1646-1653.	4.2	13
56	The effect of Link N on differentiation of human bone marrow-derived mesenchymal stem cells. Arthritis Research and Therapy, 2012, 14, R267.	3.5	22
57	Development of an Organ Culture System for Long-Term Survival of the Intact Human Intervertebral Disc. Spine, 2011, 36, 1835-1842.	2.0	59
58	Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential. European Spine Journal, 2011, 20, 1244-1254.	2.2	64
59	DNA Methylation of SPARC and Chronic Low Back Pain. Molecular Pain, 2011, 7, 1744-8069-7-65.	2.1	104
60	Maintenance of cell viability in axially loaded intervertebral disc organ culture. Evidence-based Spine-care Journal, 2011, 2, 51-52.	0.9	0
61	Identification and Characterization of the Integrin α2β1 Binding Motif in Chondroadherin Mediating Cell Attachment. Journal of Biological Chemistry, 2011, 286, 3925-3934.	3.4	32
62	Development of a Bioreactor for Axially Loaded Intervertebral Disc Organ Culture. Tissue Engineering - Part C: Methods, 2011, 17, 1011-1019.	2.1	62
63	Development of a whole disc organ culture system to study human intervertebral disc. Evidence-based Spine-care Journal, 2010, 1, 67-68.	0.9	11
64	The Tyrosine Sulfate-rich Domains of the LRR Proteins Fibromodulin and Osteoadherin Bind Motifs of Basic Clusters in a Variety of Heparin-binding Proteins, Including Bioactive Factors. Journal of Biological Chemistry, 2009, 284, 28543-28553.	3.4	47
65	178 AN ORGAN CULTURE MODEL TO STUDY BIOLOGICAL REPAIR OF THE DEGENERATE INTERVERTEBRAL DISC. Osteoarthritis and Cartilage, 2009, 17, S104-S105.	1.3	0
66	Variation in Chondroadherin Abundance and Fragmentation in the Human Scoliotic Disc. Spine, 2009, 34, 1513-1518.	2.0	19
67	Proteomic analysis of the LPS-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage. Matrix Biology, 2008, 27, 107-118.	3.6	70
68	Distribution of the collagen-binding integrin α10β1 during mouse development. Cell and Tissue Research, 2001, 306, 107-116.	2.9	89
69	Isolation, Cloning, and Sequence Analysis of the Integrin Subunit α10, a β1-associated Collagen Binding Integrin Expressed on Chondrocytes. Journal of Biological Chemistry, 1998, 273, 20383-20389.	3.4	206
70	Integrin α2β1 Is a Receptor for the Cartilage Matrix Protein Chondroadherin. Journal of Cell Biology, 1997, 138, 1159-1167.	5.2	107
71	Chondrocyte and Chondrosarcoma Cell Integrins with Affinity for Collagen Type II and Their Response to Mechanical Stress. Experimental Cell Research, 1995, 221, 496-503.	2.6	94
72	Automated biofabrication of anisotropic dense fibrin gels accelerate osteoblastic differentiation of seeded mesenchymal stem cells. Journal of Materials Research, 0, , .	2.6	2