Nicolas Michalski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3011530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Central auditory deficits associated with genetic forms of peripheral deafness. Human Genetics, 2022, 141, 335-345.	3.8	11
2	Ultrarare heterozygous pathogenic variants of genes causing dominant forms of early-onset deafness underlie severe presbycusis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31278-31289.	7.1	29
3	Mapping the Fine-Scale Organization and Plasticity of the Brain Vasculature. Cell, 2020, 180, 780-795.e25.	28.9	213
4	Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems. Annual Review of Neuroscience, 2019, 42, 67-86.	10.7	33
5	Stiffness and tension gradients of the hair cell's tip-link complex in the mammalian cochlea. ELife, 2019, 8, .	6.0	49
6	Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7765-7774.	7.1	35
7	Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. ELife, 2017, 6, .	6.0	108
8	Genetics of auditory mechano-electrical transduction. Pflugers Archiv European Journal of Physiology, 2015, 467, 49-72.	2.8	25
9	Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. Journal of Comparative Neurology, 2011, 519, 194-210.	1.6	98
10	Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5825-5830.	7.1	120
11	Control of Exocytosis by Synaptotagmins and Otoferlin in Auditory Hair Cells. Journal of Neuroscience, 2010, 30, 13281-13290.	3.6	106
12	Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells. Pflugers Archiv European Journal of Physiology, 2009, 459, 115-130.	2.8	77
13	Molecular Characterization of the Ankle-Link Complex in Cochlear Hair Cells and Its Role in the Hair Bundle Functioning. Journal of Neuroscience, 2007, 27, 6478-6488.	3.6	190
14	Usherin, the defective protein in Usher syndrome type IIA, is likely to be a component of interstereocilia ankle links in the inner ear sensory cells. Human Molecular Genetics, 2005, 14, 3921-3932.	2.9	166
15	Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Human Molecular Genetics, 2005, 14, 401-410.	2.9	166