James Degregori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3011501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resilience integrates concepts in aging research. IScience, 2022, 25, 104199.	4.1	9
2	<i>Dnmt3a</i> -Mutant Hematopoietic Stem Cell Rewire IFNγ Signaling to Gain Clonal Advantage. Blood Cancer Discovery, 2022, , OF1-OF3.	5.0	0
3	Abstract A026: Altered immune landscape in aging lungs contributes to malignant evolution. Cancer Research, 2022, 82, A026-A026.	0.9	Ο
4	Abstract IA012: Aging, tissue ecology, and the evolution of cancer within us. Cancer Research, 2022, 82, IA012-IA012.	0.9	0
5	Clonal hematopoiesis: Mutation-specific adaptation to environmental change. Cell Stem Cell, 2022, 29, 882-904.	11.1	34
6	The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on agingâ€related disease. Molecular Oncology, 2022, 16, 3238-3258.	4.6	12
7	Cancer and aging: A call to action. Aging and Cancer, 2022, 3, 87-94.	1.6	5
8	Questions to guide cancer evolution as a framework for furthering progress in cancer research and sustainable patient outcomes. , 2022, 39, .		7
9	Shedding Light on Mutant Clonal Dynamics and Cancer Risk in the Skin. Cancer Discovery, 2021, 11, 227-229.	9.4	1
10	Identifying key questions in the ecology and evolution of cancer. Evolutionary Applications, 2021, 14, 877-892.	3.1	58
11	Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	95
12	Precocious clonal hematopoiesis in Down syndrome is accompanied by immune dysregulation. Blood Advances, 2021, 5, 1791-1796.	5.2	13
13	Group phenotypic composition in cancer. ELife, 2021, 10, .	6.0	18
14	Chronic interleukin-1 exposure triggers selection for <i>Cebpa</i> -knockout multipotent hematopoietic progenitors. Journal of Experimental Medicine, 2021, 218, .	8.5	31
15	PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. Journal of Experimental Medicine, 2021, 218, .	8.5	49
16	Abstract 1442: Targeting ATM kinase and mTOR signaling reverses bone marrow stromal cell-mediated protection of FLT3-ITD AML from FLT3-targeted therapy. , 2021, , .		1
17	Interleukinâ€37 improves Tâ€cellâ€mediated immunity and chimeric antigen receptor Tâ€cell therapy in aged backgrounds. Aging Cell, 2021, 20, e13309.	6.7	14
18	Cells with cancerâ€associated mutations overtake our tissues as we age. Aging and Cancer, 2021, 2, 82-97.	1.6	15

#	Article	IF	CITATIONS
19	Molecular Biology and Evolution of Cancer: From Discovery to Action. Molecular Biology and Evolution, 2020, 37, 320-326.	8.9	43
20	Cancer Screening, Surrogates of Survival, and the Soma. Cancer Cell, 2020, 38, 433-437.	16.8	14
21	Nicotinamide Metabolism Mediates Resistance to Venetoclax in Relapsed Acute Myeloid Leukemia Stem Cells. Cell Stem Cell, 2020, 27, 748-764.e4.	11.1	130
22	Aging and Cancer : A new forum for research that spans disciplines and seeks new answers. Aging and Cancer, 2020, 1, 3-4.	1.6	1
23	Approaching Cancer Evolution from Different Angles. IScience, 2020, 23, 101661.	4.1	4
24	A somatic evolutionary model of the dynamics of aneuploid cells during hematopoietic reconstitution. Scientific Reports, 2020, 10, 12198.	3.3	0
25	The special issue on cancer and evolution: Lessons learned. Evolutionary Applications, 2020, 13, 1784-1790.	3.1	0
26	The three dimensions of somatic evolution: Integrating the role of genetic damage, lifeâ€history traits, and aging in carcinogenesis. Evolutionary Applications, 2020, 13, 1569-1580.	3.1	5
27	Aging, inflammation, and HSC. Blood, 2020, 136, 153-154.	1.4	6
28	Cancer as a disease of old age: changing mutational and microenvironmental landscapes. British Journal of Cancer, 2020, 122, 943-952.	6.4	153
29	Of mice, genes and aging. Haematologica, 2020, 105, 246-248.	3.5	1
30	Parallel Causation in Oncogenic and Anthropogenic Degradation and Extinction. Biological Theory, 2020, 15, 12-24.	1.5	4
31	TNF-α–driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood, 2019, 134, 727-740.	1.4	199
32	Measuring Aging and Identifying Aging Phenotypes in Cancer Survivors. Journal of the National Cancer Institute, 2019, 111, 1245-1254.	6.3	119
33	Somatic maintenance impacts the evolution of mutation rate. BMC Evolutionary Biology, 2019, 19, 172.	3.2	9
34	Studying Cancer Evolution and Therapeutic Responses in Different Organs: The Pros and Cons of a Broad Focus. Cancer Research, 2019, 79, 4582-4584.	0.9	2
35	Elimination of unfit cells in young and ageing skin. Nature, 2019, 568, 318-319.	27.8	4
36	Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood, 2019, 134, 389-394.	1.4	108

#	Article	IF	CITATIONS
37	Decoy fitness peaks, tumor suppression, and aging. Aging Cell, 2019, 18, e12938.	6.7	19
38	Targeting Clutamine Metabolism and Redox State for Leukemia Therapy. Clinical Cancer Research, 2019, 25, 4079-4090.	7.0	113
39	Urea Cycle Sustains Cellular Energetics upon EGFR Inhibition in EGFR-Mutant NSCLC. Molecular Cancer Research, 2019, 17, 1351-1364.	3.4	22
40	FERMI: A Novel Method for Sensitive Detection of Rare Mutations in Somatic Tissue. G3: Genes, Genomes, Genetics, 2019, 9, 2977-2987.	1.8	8
41	SIX2 Mediates Late-Stage Metastasis via Direct Regulation of <i>SOX2</i> and Induction of a Cancer Stem Cell Program. Cancer Research, 2019, 79, 720-734.	0.9	29
42	A generalized theory of age-dependent carcinogenesis. ELife, 2019, 8, .	6.0	45
43	Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia. Experimental Hematology, 2018, 58, 52-58.	0.4	64
44	Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Cancer Cell, 2018, 34, 724-740.e4.	16.8	390
45	Cysteine and Cystine Depletion Targets Leukemia Stem Cells. Blood, 2018, 132, 431-431.	1.4	0
46	Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Blood, 2018, 132, 1521-1521.	1.4	2
47	Changing mutational and adaptive landscapes and the genesis of cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1867, 84-94.	7.4	27
48	Folate dietary insufficiency and folic acid supplementation similarly impair metabolism and compromise hematopoiesis. Haematologica, 2017, 102, 1985-1994.	3.5	33
49	Connecting Cancer to Its Causes Requires Incorporation of Effects on Tissue Microenvironments. Cancer Research, 2017, 77, 6065-6068.	0.9	45
50	AZ1366: An Inhibitor of Tankyrase and the Canonical Wnt Pathway that Limits the Persistence of Non–Small Cell Lung Cancer Cells Following EGFR Inhibition. Clinical Cancer Research, 2017, 23, 1531-1541.	7.0	46
51	Cancer in Animals: Reciprocal Feedbacks Between Evolution of Cancer Resistance and Ecosystem Functioning. , 2017, , 181-191.		9
52	Trisomy 21 consistently activates the interferon response. ELife, 2016, 5, .	6.0	238
53	The Evolution of Lifespan and Age-Dependent Cancer Risk. Trends in Cancer, 2016, 2, 552-560.	7.4	83
54	ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6669-E6678.	7.1	82

#	Article	IF	CITATIONS
55	Coupling an EML4-ALK–centric interactome with RNA interference identifies sensitizers to ALK inhibitors. Science Signaling, 2016, 9, rs12.	3.6	27
56	The landscape of somatic mutations in protein coding genes in apparently benign human tissues carries signatures of relaxed purifying selection. Nucleic Acids Research, 2016, 44, 2075-2084.	14.5	47
57	Stochastic modeling reveals an evolutionary mechanism underlying elevated rates of childhood leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1050-1055.	7.1	28
58	Deficiency of mitochondrial modulator MCJ promotes chemoresistance in breast cancer. JCI Insight, 2016, 1, .	5.0	16
59	Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies. Radiation Research, 2015, 184, 341-351.	1.5	8
60	Contrasting Roles for C/EBPα and Notch in Irradiation-Induced Multipotent Hematopoietic Progenitor Cell Defects. Stem Cells, 2015, 33, 1345-1358.	3.2	17
61	Tyrosine Kinase Inhibition in Leukemia Induces an Altered Metabolic State Sensitive to Mitochondrial Perturbations. Clinical Cancer Research, 2015, 21, 1360-1372.	7.0	58
62	A Critical Examination of the "Bad Luck―Explanation of Cancer Risk. Cancer Prevention Research, 2015, 8, 762-764.	1.5	33
63	Toward an evolutionary model of cancer: Considering the mechanisms that govern the fate of somatic mutations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8914-8921.	7.1	96
64	Lack of significant association between serum inflammatory cytokine profiles and the presence of colorectal adenoma. BMC Cancer, 2015, 15, 123.	2.6	17
65	Personalized one-two punches for lung cancer. Cell Research, 2015, 25, 269-270.	12.0	4
66	PRMT1 Is a Novel Regulator of Epithelial-Mesenchymal-Transition in Non-small Cell Lung Cancer. Journal of Biological Chemistry, 2015, 290, 13479-13489.	3.4	105
67	Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. Journal of Clinical Investigation, 2015, 125, 4666-4680.	8.2	116
68	Hematopoietic Stem Cell Aging and Leukemogenesis. , 2015, , 259-286.		0
69	Oncogenic drivers and mitochondrial dependency. Aging, 2015, 7, 148-149.	3.1	2
70	Inhibiting Tyrosine Phosphorylation of Protein Kinase Cδ (PKCδ) Protects the Salivary Gland from Radiation Damage. Journal of Biological Chemistry, 2014, 289, 10900-10908.	3.4	28
71	Inhibition of calcineurin combined with dasatinib has direct and indirect antiâ€leukemia effects against BCRâ€ABL1 ⁺ leukemia. American Journal of Hematology, 2014, 89, 896-903.	4.1	11
72	Cancer Evolution Is Associated with Pervasive Positive Selection on Globally Expressed Genes. PLoS Genetics, 2014, 10, e1004239.	3.5	93

#	Article	IF	CITATIONS
73	Patterns of Somatically Acquired Amplifications and Deletions in Apparently Normal Tissues of Ovarian Cancer Patients. Cell Reports, 2014, 7, 1310-1319.	6.4	22
74	Stochastic modeling indicates that aging and somatic evolution in the hematopoietic system are driven by non-cell-autonomous processes. Aging, 2014, 6, 1033-1048.	3.1	51
75	Targeting developmental pathways in children with cancer: what price success?. Lancet Oncology, The, 2013, 14, e70-e78.	10.7	30
76	Using functional genomics to overcome therapeutic resistance in hematological malignancies. Immunologic Research, 2013, 55, 100-115.	2.9	8
77	A Receptor Tyrosine Kinase Network Composed of Fibroblast Growth Factor Receptors, Epidermal Growth Factor Receptor, v-erb-b2 Erythroblastic Leukemia Viral Oncogene Homolog 2, and Hepatocyte Growth Factor Receptor Drives Growth and Survival of Head and Neck Squamous Carcinoma Cell Lines, Molecular Pharmacology, 2013, 83, 882-893.	2.3	41
78	Tankyrase and the Canonical Wnt Pathway Protect Lung Cancer Cells from EGFR Inhibition. Cancer Research, 2012, 72, 4154-4164.	0.9	119
79	Extracellular cyclophilin-A stimulates ERK1/2 phosphorylation in a cell-dependent manner but broadly stimulates nuclear factor kappa B. Cancer Cell International, 2012, 12, 19.	4.1	32
80	ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nature Chemical Biology, 2012, 8, 646-654.	8.0	62
81	Evolved Tumor Suppression: Why Are We So Good at Not Getting Cancer?. Cancer Research, 2011, 71, 3739-3744.	0.9	101
82	How Cancer Shapes Evolution and How Evolution Shapes Cancer. Evolution: Education and Outreach, 2011, 4, 624-634.	0.8	64
83	A new role for E2F1 in DNA repair. Cell Cycle, 2011, 10, 1716-1716.	2.6	4
84	Aging-Associated Changes in Hematopoiesis and Leukemogenesis: What's the Connection?. Aging, 2011, 3, 643-656.	3.1	74
85	Genome-Wide shRNA Screen Identifies WEE1 As a Critical Mediator of Cell Fate and Novel Therapeutic Target in AML,. Blood, 2011, 118, 3503-3503.	1.4	1
86	Wnt/Ca2+/NFAT Signaling Maintains Survival of Ph+ Leukemia Cells upon Inhibition of Bcr-Abl. Cancer Cell, 2010, 18, 74-87.	16.8	164
87	Ionizing radiationâ€induced longâ€ŧerm expression of senescence markers in mice is independent of p53 and immune status. Aging Cell, 2010, 9, 398-409.	6.7	131
88	Declining lymphoid progenitor fitness promotes aging-associated leukemogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21713-21718.	7.1	72
89	Irradiation Selects for p53-Deficient Hematopoietic Progenitors. PLoS Biology, 2010, 8, e1000324.	5.6	125
90	lonizing radiation and hematopoietic malignancies: Altering the adaptive landscape. Cell Cycle, 2010, 9, 3077-3083.	2.6	26

#	Article	IF	CITATIONS
91	Mutation-specific control of BCR-ABL T315I positive leukemia with a recombinant yeast-based therapeutic vaccine in a murine model. Vaccine, 2010, 28, 6028-6035.	3.8	12
92	Knockdown of HPRT Enables Selection of Genetically Modified Human Hematopoietic Progenitor Cells Blood, 2010, 116, 3772-3772.	1.4	0
93	Irradiation Alters Selection for Oncogenic Mutations in Hematopoietic Progenitors. Cancer Research, 2009, 69, 7262-7269.	0.9	43
94	Solution Characterization of the Extracellular Region of CD147 and Its Interaction with Its Enzyme Ligand Cyclophilin A. Journal of Molecular Biology, 2009, 391, 518-535.	4.2	66
95	Declining cellular fitness with age promotes cancer initiation by selecting for adaptive oncogenic mutations. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1785, 1-11.	7.4	43
96	Critical Roles for Macrophages in Islet Angiogenesis and Maintenance During Pancreatic Degeneration. Diabetes, 2008, 57, 1605-1617.	0.6	50
97	Interfering RNA-mediated purine analog resistance for in vitro and in vivo cell selection. Blood, 2008, 112, 4466-4474.	1.4	22
98	The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3585-3590.	7.1	245
99	Replicational Stress Selects for p53 Mutation. Cell Cycle, 2007, 6, 2148-2151.	2.6	11
100	p53 Mediates Senescence-Like Arrest Induced by Chronic Replicational Stress. Molecular and Cellular Biology, 2007, 27, 5336-5351.	2.3	63
101	In Vitro and In Vivo Selection of Genetically Modified Cells Using shRNA Against HPRT and Treatment with 6-thioguanine Blood, 2007, 110, 2590-2590.	1.4	1
102	Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Current Molecular Medicine, 2006, 6, 739-748.	1.3	38
103	Putting the Oncogenic and Tumor Suppressive Activities of E2F into Context. Current Molecular Medicine, 2006, 6, 731-738.	1.3	1
104	Building a better model of cancer. Cell Division, 2006, 1, 24.	2.4	3
105	Recombinant Adenoviral Vectors Can Induce Expression of p73 via the E4-orf6/7 Protein. Journal of Virology, 2006, 80, 5349-5360.	3.4	7
106	Surprising Dependency for Retinoblastoma Protein in Ras-Mediated Tumorigenesis. Molecular and Cellular Biology, 2006, 26, 1165-1169.	2.3	13
107	Putting the Oncogenic and Tumor Suppressive Activities of E2F into Context. Current Molecular Medicine, 2006, 6, 731-738.	1.3	151
108	Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Current Molecular Medicine, 2006, 6, 739-748.	1.3	423

#	Article	IF	CITATIONS
109	Impaired DNA Replication within Progenitor Cell Pools Promotes Leukemogenesis. PLoS Biology, 2005, 3, e401.	5.6	46
110	E2F1 and E2F2 Are Differentially Required for Homeostasis-Driven and Antigen-Induced T Cell Proliferation In Vivo. Journal of Immunology, 2005, 175, 647-655.	0.8	15
111	Human Aldehyde Dehydrogenase 3A1 Inhibits Proliferation and Promotes Survival of Human Corneal Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 27998-28006.	3.4	86
112	The Rb network. Journal of Cell Science, 2004, 117, 3411-3413.	2.0	50
113	Essential Role of GATA3 for the Maintenance of Type 2 Helper T (Th2) Cytokine Production and Chromatin Remodeling at the Th2 Cytokine Gene Loci. Journal of Biological Chemistry, 2004, 279, 26983-26990.	3.4	133
114	Tumor Necrosis Factor Alpha-Induced Apoptosis Requires p73 and c-ABL Activation Downstream of RB Degradation. Molecular and Cellular Biology, 2004, 24, 4438-4447.	2.3	91
115	Roles for bone-marrow-derived cells in β-cell maintenance. Trends in Molecular Medicine, 2004, 10, 558-564.	6.7	8
116	Cell Cycle Regulatory Cascades. , 2004, , 93-128.		4
117	The Survival of Antigen-Stimulated T Cells Requires NFκB-Mediated Inhibition of p73 Expression. Immunity, 2003, 18, 331-342.	14.3	78
118	Characterization of Transcriptional Regulation During Negative Selection In Vivo. Journal of Immunology, 2003, 171, 802-811.	0.8	33
119	The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12935-12940.	7.1	80
120	Defective Gene Expression, S Phase Progression, and Maturation during Hematopoiesis in E2F1/E2F2 Mutant Mice. Molecular and Cellular Biology, 2003, 23, 3607-3622.	2.3	83
121	Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1347-1352.	7.1	122
122	Active RB Elicits Late G1/S Inhibition. Experimental Cell Research, 2002, 276, 201-213.	2.6	41
123	Identification and characterization of transcription factor target genes using gene-targeted mice. Methods, 2002, 26, 57-75.	3.8	10
124	The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochimica Et Biophysica Acta: Reviews on Cancer, 2002, 1602, 131-150.	7.4	172
125	CUSP/p63 expression in basal cell carcinoma. Experimental Dermatology, 2002, 11, 203-208.	2.9	20
126	E2F1 and E2F2 Determine Thresholds for Antigen-Induced T-Cell Proliferation and Suppress Tumorigenesis. Molecular and Cellular Biology, 2001, 21, 8547-8564.	2.3	100

#	Article	IF	CITATIONS
127	Prolactin Stimulates Activation of c-jun N-Terminal Kinase (JNK). Molecular Endocrinology, 2000, 14, 1592-1602.	3.7	32
128	hnRNP C Is Required for Postimplantation Mouse Development but Is Dispensable for Cell Viability. Molecular and Cellular Biology, 2000, 20, 4094-4105.	2.3	56
129	Ras Enhances Myc Protein Stability. Molecular Cell, 1999, 3, 169-179.	9.7	413
130	Functional analysis of E2F transcription factor. Methods in Enzymology, 1997, 283, 205-219.	1.0	69
131	Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature, 1997, 387, 422-426.	27.8	441
132	Role of the Rb/E2F pathway in cell growth control. , 1997, 173, 233-236.		179