Jian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/301149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inkjet Printing Efficient Definedâ€Pixel Matrix Perovskite Lightâ€Emitting Diodes with a Polar Polymer Modification Layer. Advanced Materials Technologies, 2022, 7, .	5.8	9
2	Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nature Photonics, 2021, 15, 238-244.	31.4	231
3	Nonfullerene electron acceptors with electron-deficient units containing cyano groups for organic solar cells. Materials Chemistry Frontiers, 2021, 5, 5549-5572.	5.9	21
4	Pâ€9.1: Bifacial Passivation towards Efficient FAPbBr 3 â€based Inverted Perovskite Lightâ€emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 565-565.	0.3	0
5	Dependence of the Radiative Efficiency of Quasi-2D Perovskite Light-Emitting Diodes on the Multiquantum-Well Composition. Journal of Physical Chemistry C, 2021, 125, 12241-12250.	3.1	2
6	Inkjet-Printed Full-Color Matrix Quasi-Two-Dimensional Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 41773-41781.	8.0	35
7	Cathode made by silver-precursor ink for all-solution processed quantum dots light-emitting diodes. Organic Electronics, 2021, 99, 106281.	2.6	0
8	Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 17150-17174.	14.6	101
9	Hole injection in perovskite light-emitting device with PEDOT:PSS/perovskite interface via MS contact. Applied Physics Letters, 2020, 117, 012107.	3.3	3
10	Inkjet Printing Matrix Perovskite Quantum Dot Lightâ€Emitting Devices. Advanced Materials Technologies, 2020, 5, 2000099.	5.8	49
11	Bifacial passivation towards efficient FAPbBr ₃ -based inverted perovskite light-emitting diodes. Nanoscale, 2020, 12, 14724-14732.	5.6	9
12	Highly efficient and stable hybrid quantum-dot light-emitting field-effect transistors. Materials Horizons, 2020, 7, 2439-2449.	12.2	4
13	All-solution processed high performance inverted quantum dot light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 4264-4270.	5.5	13
14	Inkjet printing a small-molecule binary emitting layer for organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 6906-6913.	5.5	17
15	Insulator as Efficient Hole Injection Layer in Perovskite Lightâ€Emitting Device via MIS Contact. Advanced Optical Materials, 2020, 8, 1902177.	7.3	12
16	A strategy for improving the performance of perovskite red light-emitting diodes by controlling the growth of perovskite crystal. Journal of Materials Chemistry C, 2019, 7, 11887-11895.	5.5	9
17	Stable mixed-cation perovskite light-emitting diodes. Organic Electronics, 2019, 71, 58-64.	2.6	15
18	Modifying the organic/metal interface <i>via</i> solvent vapor annealing to enhance the performance of blue OLEDs. Journal of Materials Chemistry C, 2019, 7, 4784-4790.	5.5	8

#	Article	IF	CITATIONS
19	Polymer light-emitting displays with printed cathodes. Surface and Coatings Technology, 2019, 358, 228-234.	4.8	4
20	Inverted polymer/quantum-dots hybrid white light emitting diodes. Thin Solid Films, 2019, 669, 34-41.	1.8	4
21	Synthesis and characterization of highly efficient solution-processable orange Ir(III) complexes for phosphorescent OLED applications. Organic Electronics, 2018, 57, 178-185.	2.6	12
22	Improved color purity and efficiency of blue quantum dot light-emitting diodes. Organic Electronics, 2018, 58, 245-249.	2.6	25
23	Solution processed alkali-metal and alkaline-earth-metal compounds as the efficient electron injection layer in organic light-emitting diodes. Synthetic Metals, 2018, 236, 31-35.	3.9	5
24	Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes. ACS Nano, 2018, 12, 1564-1570.	14.6	121
25	Organic/Inorganic Hybrid EIL for Allâ€ S olutionâ€Processed OLEDs. Advanced Electronic Materials, 2018, 4, 1700380.	5.1	18
26	Uniform inkjet-printed films with single solvent. Thin Solid Films, 2018, 667, 21-27.	1.8	11
27	High-Performance, Solution-Processed Quantum Dot Light-Emitting Field-Effect Transistors with a Scandium-Incorporated Indium Oxide Semiconductor. ACS Nano, 2018, 12, 4624-4629.	14.6	25
28	Allâ€Solutionâ€Processed Pure Formamidiniumâ€Based Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1804137.	21.0	77
29	Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25%. ACS Nano, 2018, 12, 6040-6049.	14.6	82
30	The effect of solvent treatment on the buried PEDOT:PSS layer. Organic Electronics, 2017, 43, 9-14.	2.6	25
31	In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display. Journal of Materials Chemistry C, 2017, 5, 5005-5009.	5.5	29
32	Effects of a random copolymer's component distribution on its opto-electronic properties. Journal of Materials Chemistry C, 2017, 5, 6163-6168.	5.5	4
33	Dipole formation at organic/metal interfaces with pre-deposited and post-deposited metal. NPG Asia Materials, 2017, 9, e379-e379.	7.9	22
34	Pâ€240: <i>Lateâ€News Poster</i> : Inverted Hybrid Quantum Dot LED with Blue Polymer as Both Hole Transporting Layer and Emission Layer. Digest of Technical Papers SID International Symposium, 2017, 48, 1725-1728.	0.3	0
35	Inkjet-printing line film with varied droplet-spacing. Organic Electronics, 2017, 51, 308-313.	2.6	26
36	Full-color quantum dots active matrix display fabricated by ink-jet printing. Science China Chemistry, 2017, 60, 1349-1355.	8.2	67

#	Article	IF	CITATIONS
37	Pâ€⊋24L: Lateâ€News Poster: Inkjetâ€printed Hyperbranched Polymer and Temperature Control of the Dewetting Phenomenon. Digest of Technical Papers SID International Symposium, 2017, 48, 1562-1564.	0.3	1
38	Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 26162-26168.	8.0	219
39	Fabricating large-area white OLED lighting panels via dip-coating. Organic Electronics, 2016, 37, 458-464.	2.6	32
40	Deciphering buried air phases on natural and bioinspired superhydrophobic surfaces using synchrotron radiation-based X-ray phase-contrast imaging. NPG Asia Materials, 2016, 8, e306-e306.	7.9	13
41	An Alkane-Soluble Dendrimer as Electron-Transport Layer in Polymer Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 20237-20242.	8.0	16
42	Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel. Scientific Reports, 2016, 6, 29055.	3.3	48
43	Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers. Organic Electronics, 2016, 31, 82-89.	2.6	59
44	Methanol treatment on low-conductive PEDOT:PSS to enhance the PLED's performance. Organic Electronics, 2016, 28, 252-256.	2.6	26
45	Energyâ€Level Alignment at the Organic/Electrode Interface in Organic Optoelectronic Devices. Advanced Functional Materials, 2016, 26, 129-136.	14.9	60
46	Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. Journal of Colloid and Interface Science, 2016, 465, 106-111.	9.4	56
47	Ether solvent treatment to improve the device performance of the organic light emitting diodes with aluminum cathode. Organic Electronics, 2015, 24, 241-245.	2.6	8
48	Free-standing, flexible, multifunctional, and environmentally stable superhydrophobic composite film made of self-assembled organic micro/super-nanostructures through solution process. Journal of Colloid and Interface Science, 2015, 445, 213-218.	9.4	14
49	Holeâ€Trapping Effect of the Aliphaticâ€Amine Based Electron Injection Materials in the Operation of OLEDs to Facilitate the Electron Injection. Advanced Electronic Materials, 2015, 1, 1400014.	5.1	20
50	Aqueous Solution Processed, Ultrathin ZnO Film with Low Conversion Temperature as the Electron Transport Layer in the Inverted Polymer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 21819-21825.	3.1	13
51	Highly Efficient, Solution Processed Electrofluorescent Small Molecule White Organic Light-Emitting Diodes with a Hybrid Electron Injection Layer. ACS Applied Materials & Interfaces, 2014, 6, 8345-8352.	8.0	36
52	Solvent treatment as an efficient anode modification method to improve device performance of polymer light-emitting diodes. Organic Electronics, 2013, 14, 548-553.	2.6	14
53	Achieving high sensitivity in single organic submicrometer ribbon based photodetector through surface engineering. Organic Electronics, 2013, 14, 1103-1108.	2.6	26
54	All-solution processed polymer light-emitting diode displays. Nature Communications, 2013, 4, 1971.	12.8	287

#	Article	IF	CITATIONS
55	A Nonâ€Fullerene Small Molecule as Efficient Electron Acceptor in Organic Bulk Heterojunction Solar Cells. Advanced Materials, 2012, 24, 957-961.	21.0	161
56	High-Performance, All-Solution-Processed Organic Nanowire Transistor Arrays with Inkjet-Printing Patterned Electrodes. Langmuir, 2011, 27, 14710-14715.	3.5	27
57	Modifying organic/metal interface via solvent treatment to improve electron injection in organic light emitting diodes. Organic Electronics, 2011, 12, 1858-1863.	2.6	72
58	Measuring external photoluminescence quantum efficiency of organic solid films. Chemical Physics Letters, 2011, 506, 321-325.	2.6	2
59	pH-neutral PEDOT:PSS as hole injection layer in polymer light emitting diodes. Organic Electronics, 2011, 12, 504-508.	2.6	37
60	Roughening the white OLED substrate's surface through sandblasting to improve the external quantum efficiency. Organic Electronics, 2011, 12, 648-653.	2.6	54
61	Highly conductive ink made of silver nanopolyhedrons through an ecofriendly solution process. Journal of Materials Research, 2011, 26, 503-507.	2.6	1
62	Pâ€167: Highâ€Efficiency Solutionâ€Processed 3.5â€inch White Backlight Panel Based on a Blue Dendrimer. Digest of Technical Papers SID International Symposium, 2010, 41, 1875-1878.	0.3	0
63	A Solution Process for Size-Controlled Growth and Transfer of Organic Nanostructures with Manufacture Scalability. Langmuir, 2010, 26, 5213-5216.	3.5	5
64	Highâ€Performance Organic Fieldâ€Effect Transistors from Organic Singleâ€Crystal Microribbons Formed by a Solution Process. Advanced Materials, 2010, 22, 1484-1487.	21.0	105
65	Direct Threeâ€Dimensional Imaging of the Buried Interfaces between Water and Superhydrophobic Surfaces. Angewandte Chemie - International Edition, 2010, 49, 9145-9148.	13.8	70
66	Highly stable blue light-emitting materials with a three-dimensional architecture: improvement of charge injection and electroluminescence performance. New Journal of Chemistry, 2010, 34, 699.	2.8	28
67	A photoswitch based on self-assembled single microwire of a phenyleneethynylene macrocycle. Chemical Communications, 2010, 46, 5725.	4.1	43
68	Highly Efficient and Colorâ€Stable Deepâ€Blue Organic Lightâ€Emitting Diodes Based on a Solutionâ€Processible Dendrimer. Advanced Materials, 2009, 21, 4854-4858.	21.0	108
69	Performance analysis of PLED based flat panel display with RGBW sub-pixel layout. Organic Electronics, 2009, 10, 857-862.	2.6	19
70	π onjugated Dendrimers as Stable Pureâ€Blue Emissive Materials: Photophysical, Electrochemical, and Electroluminescent Properties. Chemistry - an Asian Journal, 2009, 4, 548-553.	3.3	21
71	Organic Supernanostructures Self-Assembled via Solution Process for Explosive Detection. Langmuir, 2009, 25, 1306-1310.	3.5	53
72	Highly Sensitive, Airâ€Stable Photodetectors Based on Single Organic Subâ€micrometer Ribbons Selfâ€Assembled through Solution Processing. Advanced Materials, 2008, 20, 3745-3749.	21.0	138

#	Article	IF	CITATIONS
73	Utilizing white OLED for full color reproduction in flat panel display. Organic Electronics, 2008, 9, 533-538.	2.6	48
74	Full color and monochrome passive-matrix polymer light-emitting diodes flat panel displays made with solution processes. Organic Electronics, 2008, 9, 95-100.	2.6	46
75	Flexible Carbon Nanotubeâ`'Polymer Composite Films with High Conductivity and Superhydrophobicity Made by Solution Process. Nano Letters, 2008, 8, 4454-4458.	9.1	154
76	Single Microwire Transistors of Oligoarenes by Direct Solution Process. Journal of the American Chemical Society, 2007, 129, 12386-12387.	13.7	173
77	Performance simulation of active-matrix OLED displays. , 2005, , .		3