Ashley C Banyard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3011398/publications.pdf Version: 2024-02-01

ASHLEY C RANVADD

#	Article	IF	CITATIONS
1	Gross pathology associated with highly pathogenic avian influenza H5N8 and H5N1 in naturally infected birds in the UK (2020–2021). Veterinary Record, 2022, 190, e731.	0.2	16
2	Rapid and sensitive detection of high pathogenicity Eurasian clade 2.3.4.4b avian influenza viruses in wild birds and poultry. Journal of Virological Methods, 2022, 301, 114454.	1.0	18
3	Detection of Highly Pathogenic Avian Influenza Virus H5N1 Clade 2.3.4.4b in Great Skuas: A Species of Conservation Concern in Great Britain. Viruses, 2022, 14, 212.	1.5	47
4	Gross pathology of high pathogenicity avian influenza virus H5N1 2021–2022 epizootic in naturally infected birds in the United Kingdom. One Health, 2022, 14, 100392.	1.5	14
5	JMM Profile: Avian influenza: a veterinary pathogen with zoonotic potential. Journal of Medical Microbiology, 2022, 71, .	0.7	1
6	Has Epizootic Become Enzootic? Evidence for a Fundamental Change in the Infection Dynamics of Highly Pathogenic Avian Influenza in Europe, 2021. MBio, 2022, 13, .	1.8	64
7	High genetic variability of Schmallenberg virus M-segment leads to efficient immune escape from neutralizing antibodies. PLoS Pathogens, 2021, 17, e1009247.	2.1	2
8	Thapsigargin Is a Broad-Spectrum Inhibitor of Major Human Respiratory Viruses: Coronavirus, Respiratory Syncytial Virus and Influenza A Virus. Viruses, 2021, 13, 234.	1.5	33
9	Comparison of Serological Assays for the Detection of SARS-CoV-2 Antibodies. Viruses, 2021, 13, 713.	1.5	18
10	Assessing Rabies Vaccine Protection against a Novel Lyssavirus, Kotalahti Bat Lyssavirus. Viruses, 2021, 13, 947.	1.5	13
11	Antigenic evolution of contemporary clade 2.3.4.4 HPAI H5 influenza A viruses and impact on vaccine use for mitigation and control. Vaccine, 2021, 39, 3794-3798.	1.7	6
12	Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection. Vaccines, 2021, 9, 741.	2.1	9
13	Renewed Public Health Threat from Emerging Lyssaviruses. Viruses, 2021, 13, 1769.	1.5	21
14	Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerging Microbes and Infections, 2021, 10, 148-151.	3.0	125
15	Incursion of European Bat Lyssavirus 1 (EBLV-1) in Serotine Bats in the United Kingdom. Viruses, 2021, 13, 1979.	1.5	5
16	Ongoing Assessment of the Molecular Evolution of Peste Des Petits Ruminants Virus Continues to Question Viral Origins. Viruses, 2021, 13, 2144.	1.5	8
17	Encephalitis and Death in Wild Mammals at a Rehabilitation Center after Infection with Highly Pathogenic Avian Influenza A(H5N8) Virus, United Kingdom. Emerging Infectious Diseases, 2021, 27, 2856-2863.	2.0	53
18	The Emergence of H7N7 Highly Pathogenic Avian Influenza Virus from Low Pathogenicity Avian Influenza Virus Using an in ovo Embryo Culture Model. Viruses, 2020, 12, 920.	1.5	10

#	Article	IF	CITATIONS
19	Bat rabies. , 2020, , 231-276.		12
20	Between roost contact is essential for maintenance of European bat lyssavirus type-2 in Myotis daubentonii bat reservoir: †The Swarming Hypothesis'. Scientific Reports, 2020, 10, 1740.	1.6	9
21	Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species. PLoS Neglected Tropical Diseases, 2020, 14, e0008898.	1.3	8
22	Rabies Life Cycle, Transmission and Pathogenesis. , 2020, , 1-10.		2
23	H5N8 highly pathogenic avian influenza virus introduction risk routes in a high biosecurity floor reared poultry setting. Access Microbiology, 2020, 2, .	0.2	0
24	Title is missing!. , 2020, 14, e0008898.		0
25	Title is missing!. , 2020, 14, e0008898.		0
26	Title is missing!. , 2020, 14, e0008898.		0
27	Title is missing!. , 2020, 14, e0008898.		0
28	Title is missing!. , 2020, 14, e0008898.		0
29	Title is missing!. , 2020, 14, e0008898.		0
30	New human rabies vaccines in the pipeline. Vaccine, 2019, 37, A140-A145.	1.7	22
31	Pan-lyssavirus Real Time RT-PCR for Rabies Diagnosis. Journal of Visualized Experiments, 2019, , .	0.2	17
32	Current Rabies Vaccines Do Not Confer Protective Immunity against Divergent Lyssaviruses Circulating in Europe. Viruses, 2019, 11, 892.	1.5	12
33	Avoiding preventable deaths: The scourge of counterfeit rabies vaccines. Vaccine, 2019, 37, 2285-2287.	1.7	22
34	Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Tropical Medicine and Infectious Disease, 2019, 4, 31.	0.9	51
35	Re-evaluating the effect of Favipiravir treatment on rabies virus infection. Vaccine, 2019, 37, 4686-4693.	1.7	35
36	In vitro and in vivo evaluation of a single chain antibody fragment generated in planta with potent rabies neutralisation activity. Vaccine, 2019, 37, 4673-4680.	1.7	8

#	Article	IF	CITATIONS
37	Trying to treat the untreatable: experimental approaches to clear rabies virus infection from the CNS. Journal of General Virology, 2019, 100, 1171-1186.	1.3	19
38	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	0.9	153
39	The lyssavirus host-specificity conundrum — rabies virus — the exception not the rule. Current Opinion in Virology, 2018, 28, 68-73.	2.6	41
40	Utilisation of Chimeric Lyssaviruses to Assess Vaccine Protection against Highly Divergent Lyssaviruses. Viruses, 2018, 10, 130.	1.5	11
41	Isolation, antigenicity and immunogenicity of Lleida bat lyssavirus. Journal of General Virology, 2018, 99, 1590-1599.	1.3	22
42	Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus. PLoS Neglected Tropical Diseases, 2018, 12, e0006311.	1.3	21
43	Complete Genome Sequence of Lleida Bat Lyssavirus. Genome Announcements, 2017, 5, .	0.8	12
44	Japanese encephalitis virus infection, diagnosis and control in domestic animals. Veterinary Microbiology, 2017, 201, 85-92.	0.8	134
45	Inactivation of rabies virus. Journal of Virological Methods, 2017, 243, 109-112.	1.0	10
46	Complete Genomic Sequence of Canine Distemper Virus from an Ethiopian Wolf. Genome Announcements, 2017, 5, .	0.8	0
47	Rabies. Nature Reviews Disease Primers, 2017, 3, 17091.	18.1	239
48	The impact of novel lyssavirus discovery. Microbiology Australia, 2017, 38, 17.	0.1	23
49	Lagos Bat Virus Infection Dynamics in Free-Ranging Straw-Colored Fruit Bats (Eidolon helvum). Tropical Medicine and Infectious Disease, 2017, 2, 25.	0.9	16
50	Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host. Virus Evolution, 2017, 3, vex038.	2.2	32
51	Rabies and Distemper Outbreaks in Smallest Ethiopian Wolf Population. Emerging Infectious Diseases, 2017, 23, 2102-2104.	2.0	17
52	Lyssavirus in Indian Flying Foxes, Sri Lanka. Emerging Infectious Diseases, 2016, 22, 1456-1459.	2.0	69
53	Supporting rabies control in India. Veterinary Record, 2016, 179, 296-297.	0.2	3
54	Canine Distemper in Endangered Ethiopian Wolves. Emerging Infectious Diseases, 2015, 21, 824-832.	2.0	56

#	Article	IF	CITATIONS
55	Molecular Epidemiology of Peste des Petits Ruminants Virus. , 2015, , 69-93.		4
56	Rescue of a vaccine strain of peste des petits ruminants virus: In vivo evaluation and comparison with standard vaccine. Vaccine, 2015, 33, 465-471.	1.7	30
57	Complex Epidemiology of a Zoonotic Disease in a Culturally Diverse Region: Phylogeography of Rabies Virus in the Middle East. PLoS Neglected Tropical Diseases, 2015, 9, e0003569.	1.3	42
58	Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine, 2015, 33, 5520-5531.	1.7	128
59	Peste des petits ruminants. Veterinary Microbiology, 2015, 181, 90-106.	0.8	187
60	Pathology of Peste des Petits Ruminants. , 2015, , 51-67.		7
61	Molecular characterisation of lineage IV peste des petits ruminants virus using multi gene sequence data. Veterinary Microbiology, 2014, 174, 39-49.	0.8	56
62	Cetacean Morbillivirus: Current Knowledge and Future Directions. Viruses, 2014, 6, 5145-5181.	1.5	195
63	Lyssaviruses and Bats: Emergence and Zoonotic Threat. Viruses, 2014, 6, 2974-2990.	1.5	93
64	Complete Genome Sequences of Lineage III Peste des Petits Ruminants Viruses from the Middle East and East Africa. Genome Announcements, 2014, 2, .	0.8	34
65	Molecular Evolution of Peste des Petits Ruminants Virus. Emerging Infectious Diseases, 2014, 20, 2023-2033.	2.0	78
66	Peste des Petits Ruminants Virus, Eastern Asia. Emerging Infectious Diseases, 2014, 20, 2176-2178.	2.0	37
67	Morbillivirus vaccines: Recent successes and future hopes. Vaccine, 2014, 32, 3155-3161.	1.7	26
68	Lyssavirus infection: †Low dose, multiple exposure' in the mouse model. Virus Research, 2014, 181, 35-42.	1.1	10
69	Current status of rabies and prospects for elimination. Lancet, The, 2014, 384, 1389-1399.	6.3	370
70	Engineering, Expression in Transgenic Plants and Characterisation of E559, a Rabies Virus-Neutralising Monoclonal Antibody. Journal of Infectious Diseases, 2014, 210, 200-208.	1.9	50
71	Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus. Journal of General Virology, 2014, 95, 1025-1032.	1.3	40
72	Comparative studies on the genetic, antigenic and pathogenic characteristics of Bokeloh bat lyssavirus. Journal of General Virology, 2014, 95, 1647-1653.	1.3	34

#	Article	IF	CITATIONS
73	Lyssaviruses. , 2014, , 159-170.		Ο
74	Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine, 2013, 31, 1553-1559.	1.7	79
75	Control and prevention of canine rabies: The need for building laboratory-based surveillance capacity. Antiviral Research, 2013, 98, 357-364.	1.9	85
76	Bat Rabies. , 2013, , 215-267.		11
77	European ring trial to evaluate ELISAs for the diagnosis of infection with Rift Valley fever virus. Journal of Virological Methods, 2013, 187, 177-181.	1.0	57
78	Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Pediatria Polska, 2013, 88, T15-T23.	0.1	1
79	Pathobiology of rabies virus and the European bat lyssaviruses in experimentally infected mice. Virus Research, 2013, 172, 46-53.	1.1	22
80	Detection of rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of Spanish bats. Journal of General Virology, 2013, 94, 69-75.	1.3	42
81	Production, characterization, and antigen specificity of recombinant 62â€71â€3, a candidate monoclonal antibody for rabies prophylaxis in humans. FASEB Journal, 2013, 27, 2055-2065.	0.2	48
82	Complete Genome Sequence of a Peste des Petits Ruminants Virus Recovered from an Alpine Goat during an Outbreak in Morocco in 2008. Genome Announcements, 2013, 1, .	0.8	21
83	A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion. PLoS Pathogens, 2013, 9, e1003297.	2.1	88
84	Interspecies protein substitution to investigate the role of the lyssavirus glycoprotein. Journal of General Virology, 2013, 94, 284-292.	1.3	11
85	Early Events following Experimental Infection with Peste-Des-Petits Ruminants Virus Suggest Immune Cell Targeting. PLoS ONE, 2013, 8, e55830.	1.1	86
86	Complete Genome Sequence of Ikoma Lyssavirus. Journal of Virology, 2012, 86, 10242-10243.	1.5	21
87	Rabies virus vaccines: Is there a need for a pan-lyssavirus vaccine?. Vaccine, 2012, 30, 7447-7454.	1.7	63
88	Passive immunity in the prevention of rabies. Lancet Infectious Diseases, The, 2012, 12, 397-407.	4.6	110
89	A novel approach to generating morbillivirus vaccines: Negatively marking the rinderpest vaccine. Vaccine, 2012, 30, 1927-1935.	1.7	14
90	Natural infection with peste des petits ruminants virus: A pre and post vaccinal assessment following an outbreak scenario. Virus Research, 2012, 167, 43-47.	1.1	23

#	Article	IF	CITATIONS
91	lkoma Lyssavirus, Highly Divergent Novel Lyssavirus in an African Civet1. Emerging Infectious Diseases, 2012, 18, 664-7.	2.0	99
92	Bats and Lyssaviruses. Advances in Virus Research, 2011, 79, 239-289.	0.9	147
93	A real time RT-PCR assay for the specific detection of Peste des petits ruminants virus. Journal of Virological Methods, 2011, 171, 401-404.	1.0	83
94	A universal real-time assay for the detection of Lyssaviruses. Journal of Virological Methods, 2011, 177, 87-93.	1.0	76
95	Morbillivirus infection in pilot whales: strict protein requirement drives genetic conservation. Archives of Virology, 2011, 156, 1853-1859.	0.9	5
96	Evolutionary History of Rabies in Ghana. PLoS Neglected Tropical Diseases, 2011, 5, e1001.	1.3	50
97	Rinderpest virus expressing enhanced green fluorescent protein as a separate transcription unit retains pathogenicity for cattle. Journal of General Virology, 2010, 91, 2918-2927.	1.3	6
98	Global distribution of peste des petits ruminants virus and prospects for improved diagnosis and control. Journal of General Virology, 2010, 91, 2885-2897.	1.3	344
99	Reassessing the risk from rabies: A continuing threat to the UK?. Virus Research, 2010, 152, 79-84.	1.1	13
100	EPIDEMIOLOGY, PATHOLOGY, AND GENETIC ANALYSIS OF A CANINE DISTEMPER EPIDEMIC IN NAMIBIA. Journal of Wildlife Diseases, 2009, 45, 1008-1020.	0.3	29
101	Emerging Technologies for the Detection of Rabies Virus: Challenges and Hopes in the 21st Century. PLoS Neglected Tropical Diseases, 2009, 3, e530.	1.3	105
102	Real-time RT-PCR assays for the rapid and differential detection of dolphin and porpoise morbilliviruses. Journal of Virological Methods, 2009, 156, 117-123.	1.0	23
103	Repeated detection of European bat lyssavirus type 2 in dead bats found at a single roost site in the UK. Archives of Virology, 2009, 154, 1847-50.	0.9	24
104	Genetic diversity and phylogenetic analysis of the attachment glycoprotein of phocine distemper viruses of the 2002 and 1988 epizootics. Virus Research, 2009, 144, 323-328.	1.1	12
105	Sequence of the nucleocapsid gene and genome and antigenome promoters for an isolate of porpoise morbillivirus. Virus Research, 2008, 132, 213-219.	1.1	11
106	Full genome sequences of two virulent strains of peste-des-petits ruminants virus, the Côte d'lvoire 1989 and Nigeria 1976 strains. Virus Research, 2008, 136, 192-197.	1.1	47
107	Dolphin Morbillivirus Epizootic Resurgence, Mediterranean Sea. Emerging Infectious Diseases, 2008, 14, 471-473.	2.0	121
108	Reverse genetics for peste-des-petits-ruminants virus (PPRV): Promoter and protein specificities. Virus Research, 2007, 126, 250-255.	1.1	35

#	Article	IF	CITATIONS
109	Molecular biology of the morbilliviruses. , 2006, , 31-IV.		10
110	The morbilliviruses. , 2006, , 13-III.		0
111	A role for virus promoters in determining the pathogenesis of Rinderpest virus in cattle. Journal of General Virology, 2005, 86, 1083-1092.	1.3	19
112	The Plowright vaccine strain of Rinderpest virus has attenuating mutations in most genes. Journal of General Virology, 2005, 86, 1093-1101.	1.3	29
113	Rational Attenuation of a Morbillivirus by Modulating the Activity of the RNA-Dependent RNA Polymerase. Journal of Virology, 2005, 79, 14330-14338.	1.5	41
114	Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus. Virus Research, 2005, 110, 119-124.	1.1	167