Alberto Fernandez-Nieves

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/3011397/alberto-fernandez-nieves-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

180 papers

7,388 citations

43 h-index 82 g-index

200 ext. papers

8,098 ext. citations

6.3 avg, IF

6.01 L-index

#	Paper	IF	Citations
180	Dripping to jetting transitions in coflowing liquid streams. <i>Physical Review Letters</i> , 2007 , 99, 094502	7.4	621
179	Designer emulsions using microfluidics. <i>Materials Today</i> , 2008 , 11, 18-27	21.8	544
178	Soft colloids make strong glasses. <i>Nature</i> , 2009 , 462, 83-6	50.4	417
177	Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics. MRS Bulletin, 2007, 32, 702-708	3.2	265
176	Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1819-22	16.4	257
175	Charge Controlled Swelling of Microgel Particles. <i>Macromolecules</i> , 2000 , 33, 2114-2118	5.5	199
174	Frustrated nematic order in spherical geometries. <i>Nature Physics</i> , 2011 , 7, 391-394	16.2	196
173	Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. <i>Physical Review E</i> , 2002 , 66, 051803	2.4	190
172	Novel defect structures in nematic liquid crystal shells. <i>Physical Review Letters</i> , 2007 , 99, 157801	7.4	185
171	The polymer/colloid duality of microgel suspensions. Annual Review of Physical Chemistry, 2012, 63, 25-	· 43 5.7	171
170	Drops and shells of liquid crystal. <i>Colloid and Polymer Science</i> , 2011 , 289, 345-359	2.4	160
169	Absolute instability of a liquid jet in a coflowing stream. <i>Physical Review Letters</i> , 2008 , 100, 014502	7.4	143
168	Transition from turbulent to coherent flows in confined three-dimensional active fluids. <i>Science</i> , 2017 , 355,	33.3	140
167	Colloidal assembly route for responsive colloidosomes with tunable permeability. <i>Nano Letters</i> , 2007 , 7, 2876-80	11.5	130
166	Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. <i>Nano Letters</i> , 2008 , 8, 168-72	11.5	128
165	Gels and microgels for nanotechnological applications. <i>Advances in Colloid and Interface Science</i> , 2009 , 147-148, 88-108	14.3	124
164	Nematic-smectic transition in spherical shells. <i>Physical Review Letters</i> , 2011 , 106, 247802	7.4	89

(2007-2010)

163	Temperature-controlled transitions between glass, liquid, and gel states in dense p-NIPA suspensions. <i>Advanced Materials</i> , 2010 , 22, 3441-5	24	82
162	Salt effects over the swelling of ionized mesoscopic gels. <i>Journal of Chemical Physics</i> , 2001 , 115, 7644-7	7649	81
161	Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders. <i>Nature Communications</i> , 2015 , 6, 8067	17.4	78
160	Stable nematic droplets with handles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 9295-300	11.5	<i>75</i>
159	Generation and stability of toroidal droplets in a viscous liquid. <i>Physical Review Letters</i> , 2009 , 102, 2345	50 / 1.4	75
158	The CONTIN algorithm and its application to determine the size distribution of microgel suspensions. <i>Journal of Chemical Physics</i> , 2015 , 142, 234905	3.9	74
157	Osmotic de-swelling of ionic microgel particles. <i>Journal of Chemical Physics</i> , 2003 , 119, 10383-10388	3.9	74
156	Optically Anisotropic Colloids of Controllable Shape. <i>Advanced Materials</i> , 2005 , 17, 680-684	24	72
155	Reversible Inter- and Intra-Microgel Cross-Linking using Disulfides. <i>Macromolecules</i> , 2012 , 45, 39-45	5.5	70
154	Scaling the drop size in coflow experiments. <i>New Journal of Physics</i> , 2009 , 11, 075021	2.9	69
153	Curvature-induced defect unbinding and dynamics in active nematic toroids. <i>Nature Physics</i> , 2018 , 14, 85-90	16.2	64
152	Mechanics of fire ant aggregations. <i>Nature Materials</i> , 2016 , 15, 54-9	27	63
151	Origin of de-swelling and dynamics of dense ionic microgel suspensions. <i>Journal of Chemical Physics</i> , 2012 , 136, 124905	3.9	63
150	Single-platelet nanomechanics measured by high-throughput cytometry. <i>Nature Materials</i> , 2017 , 16, 230-235	27	61
149	Suppression of instabilities in multiphase flow by geometric confinement. <i>Physical Review E</i> , 2009 , 79, 056310	2.4	61
148	Deswelling Microgel Particles Using Hydrostatic Pressure. <i>Macromolecules</i> , 2009 , 42, 6225-6230	5.5	61
147	Topological changes in bipolar nematic droplets under flow. <i>Physical Review Letters</i> , 2007 , 98, 087801	7.4	60
146	Fabrication of Monodisperse Gel Shells and Functional Microgels in Microfluidic Devices. Angewandte Chemie, 2007 , 119, 1851-1854	3.6	56

145	The role of ions in the self-healing behavior of soft particle suspensions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5576-81	11.5	56
144	Reversible Aggregation of Soft Particles. <i>Langmuir</i> , 2001 , 17, 1841-1846	4	54
143	Electro-optics of bipolar nematic liquid crystal droplets. <i>Physical Review Letters</i> , 2004 , 92, 105503	7.4	52
142	Phase switching of ordered arrays of liquid crystal emulsions. <i>Applied Physics Letters</i> , 2003 , 82, 2610-26	13.4	52
141	Topological transformations in bipolar shells of nematic liquid crystals. <i>Physical Review E</i> , 2009 , 79, 021	7 <u>0</u> .74	47
140	Coupled deswelling of multiresponse microgels. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 12195-200	3.4	45
139	The role of [potential in the colloidal stability of different TiO2/electrolyte solution interfaces. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 148, 231-243	5.1	44
138	Bulk modulus of poly(N-isopropylacrylamide) microgels through the swelling transition. <i>Physical Review E</i> , 2011 , 84, 011406	2.4	43
137	Defect trajectories in nematic shells: role of elastic anisotropy and thickness heterogeneity. <i>Physical Review E</i> , 2012 , 86, 020705	2.4	43
136	Bulk and shear moduli of compressed microgel suspensions. <i>Physical Review E</i> , 2011 , 84, 060402	2.4	42
135	Form factor of pNIPAM microgels in overpacked states. <i>Journal of Chemical Physics</i> , 2014 , 141, 034901	3.9	41
134	Macroscopically probing the entropic influence of ions: deswelling neutral microgels with salt. <i>Physical Review E</i> , 2007 , 75, 011801	2.4	41
133	Biofilm formation in geometries with different surface curvature and oxygen availability. <i>New Journal of Physics</i> , 2015 , 17, 033017	2.9	40
132	Impact of single-particle compressibility on the fluid-solid phase transition for ionic microgel suspensions. <i>Physical Review Letters</i> , 2015 , 114, 098303	7.4	39
131	Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5708-5711	16.4	37
130	Motion of microgel particles under an external electric field. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 3605-3614	1.8	36
129	Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 885-890	11.5	35
128	Elasticity and dynamics of particle gels in non-Newtonian melts. <i>Rheologica Acta</i> , 2008 , 47, 989-997	2.3	35

(2011-2006)

127	Thermal control over the electrophoresis of soft colloidal particles. <i>Langmuir</i> , 2006 , 22, 3586-90	4	35
126	Whipping of electrified liquid jets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13763-7	11.5	34
125	Electrophoresis of ionic microgel particles: from charged hard spheres to polyelectrolyte-like behavior. <i>Journal of Chemical Physics</i> , 2005 , 122, 84702	3.9	34
124	Thermodynamics of ionic microgels. <i>Physical Review E</i> , 2002 , 65, 036143	2.4	34
123	Determination of the bulk modulus of microgel particles. <i>Colloid and Polymer Science</i> , 2011 , 289, 721-7	28 .4	33
122	Swelling kinetics of poly(N-isopropylacrylamide) minigels. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 25729-33	3.4	33
121	Mesoscale modeling of microgel mechanics and kinetics through the swelling transition. <i>Applied Mathematics and Mechanics (English Edition)</i> , 2018 , 39, 47-62	3.2	31
120	Static light scattering from microgel particles: model of variable dielectric permittivity. <i>Journal of Chemical Physics</i> , 2004 , 120, 374-8	3.9	31
119	Phase and non-equilibrium behaviour of microgel suspensions as a function of particle stiffness. <i>Soft Matter</i> , 2012 , 8, 4141	3.6	30
118	Fabrication of novel silicone capsules with tunable mechanical properties by microfluidic techniques. <i>ACS Applied Materials & Samp; Interfaces</i> , 2013 , 5, 5247-52	9.5	30
117	Swelling Kinetics of a Microgel Shell. <i>Macromolecules</i> , 2009 , 42, 9357-9365	5.5	28
116	Bivalent defect configurations in inhomogeneous nematic shells. <i>Soft Matter</i> , 2013 , 9, 4993	3.6	27
115	Current-voltage characteristic of electrospray processes in microfluidics. <i>Physical Review Letters</i> , 2010 , 105, 154503	7.4	27
114	Stability of toroidal droplets inside yield stress materials. <i>Physical Review E</i> , 2014 , 90, 021002	2.4	26
113	The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization. <i>Journal of Optics</i> , 2004 , 6, S235-S238		25
112	Phase behavior of binary and polydisperse suspensions of compressible microgels controlled by selective particle deswelling. <i>Physical Review E</i> , 2017 , 96, 032609	2.4	24
111	Modular degradable hydrogels based on thiol-reactive oxanorbornadiene linkers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4984-7	16.4	24
110	The effect of hydrostatic pressure over the swelling of microgel particles. <i>Soft Matter</i> , 2011 , 7, 6370	3.6	24

109	Effect of added free polymer on the swelling of neutral microgel particles: a thermodynamic approach. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 12721-7	3.4	24
108	Experimental Test of the Ion Condensation. <i>Langmuir</i> , 2000 , 16, 4090-4093	4	24
107	Structural properties of thermoresponsive poly(N-isopropylacrylamide)-poly(ethyleneglycol) microgels. <i>Journal of Chemical Physics</i> , 2012 , 136, 214903	3.9	23
106	Capillary-Based Microfluidics-Coflow, Flow-Focusing, Electro-Coflow, Drops, Jets, and Instabilities. <i>Small</i> , 2020 , 16, e1904344	11	23
105	Transient formation of bcc crystals in suspensions of poly(N-isopropylacrylamide)-based microgels. <i>Physical Review E</i> , 2013 , 88, 052308	2.4	22
104	Structural changes of poly(N-isopropylacrylamide)-based microgels induced by hydrostatic pressure and temperature studied by small angle neutron scattering. <i>Journal of Chemical Physics</i> , 2010 , 133, 034	1987	22
103	Geometrical Control of Active Turbulence in Curved Topographies. <i>Physical Review Letters</i> , 2019 , 122, 168002	7.4	20
102	Defect coalescence in spherical nematic shells. <i>Physical Review E</i> , 2012 , 86, 030702	2.4	20
101	Corrugated interfaces in multiphase core-annular flow. <i>Physics of Fluids</i> , 2010 , 22, 082002	4.4	20
100	Point of zero charge estimation for a TiO2/water interface 1998 , 21-24		20
99	Ultrathin Double-Shell Capsules for High Performance Photon Upconversion. <i>Advanced Materials</i> , 2017 , 29, 1606830	24	19
98	The role of polymer polydispersity in phase separation and gelation in colloid-polymer mixtures. <i>Langmuir</i> , 2010 , 26, 3174-8	4	19
97	Absorption Properties of Microgel-PVP Composite Nanofibers Made by Electrospinning. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 183-9	4.8	19
96	Gravitational compression of colloidal gels. <i>European Physical Journal E</i> , 2009 , 28, 159-64	1.5	18
95	Fabrication of structured micro and nanofibers by coaxial electrospinning. <i>Journal of Physics: Conference Series</i> , 2008 , 127, 012008	0.3	18
94	Engineering colloids with optical and geometrical anisotropies: de-coupling size monodispersity and particle properties. <i>Soft Matter</i> , 2006 , 2, 105-108	3.6	18
93	Structure formation from mesoscopic soft particles. <i>Physical Review E</i> , 2001 , 64, 051603	2.4	18
92	Dynamics of oppositely charged emulsion droplets. <i>Physics of Fluids</i> , 2015 , 27, 082003	4.4	17

(2012-2019)

91	Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries. <i>ACS Applied Materials & District Research</i> 11, 27906-27912	9.5	17
90	Motion of microgels in electric fields. <i>Advances in Colloid and Interface Science</i> , 2009 , 147-148, 178-85	14.3	17
89	Dynamic light scattering from high molecular weight poly-l-lysine molecules. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 270-271, 335-339	5.1	17
88	Spherical nematic shells with a threefold valence. <i>Physical Review E</i> , 2016 , 94, 012703	2.4	16
87	Crystal structure of highly concentrated, ionic microgel suspensions studied by neutron scattering. <i>Physical Review E</i> , 2009 , 79, 051403	2.4	16
86	Microgels and Their Synthesis: An Introduction 2011 , 1-32		16
85	Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers. <i>Applied Physics Letters</i> , 2007 , 91, 091119	3.4	16
84	Polarization dependent Bragg diffraction and electro-optic switching of three-dimensional assemblies of nematic liquid crystal droplets. <i>Applied Physics Letters</i> , 2006 , 88, 121911	3.4	16
83	Computer simulations of nematic drops: coupling between drop shape and nematic order. <i>Journal of Chemical Physics</i> , 2012 , 137, 034505	3.9	15
82	Particle-counterion clustering in highly charge-asymmetric complex fluids. <i>Physical Review E</i> , 2001 , 63, 041404	2.4	15
81	Spontaneous deswelling of microgels controlled by counterion clouds. <i>Physical Review E</i> , 2019 , 99, 042	6024	14
80	Swelling thermodynamics and phase transitions of polymer gels. <i>Nano Futures</i> , 2019 , 3, 042001	3.6	14
79	Ionic correlations in highly charge-asymmetric colloidal liquids. <i>Journal of Chemical Physics</i> , 2005 , 123, 054905	3.9	14
7 ⁸	Structurally Stable Attractive Nanoscale Emulsions with Dipole-Dipole Interaction-Driven Interdrop Percolation. <i>Chemistry - A European Journal</i> , 2017 , 23, 4292-4297	4.8	13
77	Reverse Janssen Effect in Narrow Granular Columns. <i>Physical Review Letters</i> , 2020 , 124, 128002	7.4	13
76	Crystal structure of highly concentrated, ionic microgel suspensions studied by small-angle x-ray scattering. <i>Physical Review E</i> , 2010 , 81, 052401	2.4	13
75	Curvature-Induced Twist in Homeotropic Nematic Tori. <i>Physical Review Letters</i> , 2018 , 121, 247803	7.4	12
74	Smectic shells. Journal of Physics Condensed Matter, 2012 , 24, 284122	1.8	11

73	Rheology of Industrially Relevant Microgels 2011 , 327-353		11
72	Behavior and mechanics of dense microgel suspensions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 27096-27103	11.5	11
71	Exquisite regulation of supramolecular equilibrium polymers in water: chain stoppers control length, polydispersity and viscoelasticity. <i>Polymer Chemistry</i> , 2018 , 9, 5268-5277	4.9	11
70	Charge segregation in weakly ionized microgels. <i>Physical Review E</i> , 2017 , 95, 012608	2.4	10
69	Drop size control in electro-coflow. <i>Applied Physics Letters</i> , 2011 , 99, 021910	3.4	10
68	Activity-driven changes in the mechanical properties of fire ant aggregations. <i>Physical Review E</i> , 2017 , 96, 052601	2.4	9
67	Shrinking instability of toroidal droplets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2871-2875	11.5	8
66	Toroidal-droplet instabilities in the presence of charge. <i>Physical Review E</i> , 2017 , 95, 033122	2.4	7
65	Altering colloidal surface functionalization using DNA encapsulated inside monodisperse gelatin microsphere templates. <i>Langmuir</i> , 2013 , 29, 5534-9	4	7
64	Microgels in Drug Delivery 2011 , 375-405		7
			7
63	Osmotic pressure of suspensions comprised of charged microgels. <i>Physical Review E</i> , 2021 , 103, 012609	2.4	7
63 62	Osmotic pressure of suspensions comprised of charged microgels. <i>Physical Review E</i> , 2021 , 103, 012609 Rheology of capillary foams. <i>Soft Matter</i> , 2020 , 16, 6725-6732	3.6	
		'	7
62	Rheology of capillary foams. <i>Soft Matter</i> , 2020 , 16, 6725-6732	'	7
62	Rheology of capillary foams. <i>Soft Matter</i> , 2020 , 16, 6725-6732 Optical Microscopy of Soft Matter Systems 2016 , 165-186 Segregation of mass at the periphery of N-isopropylacrylamide-co-acrylic-acid microgels at high	3.6	766
62 61 60	Rheology of capillary foams. <i>Soft Matter</i> , 2020 , 16, 6725-6732 Optical Microscopy of Soft Matter Systems 2016 , 165-186 Segregation of mass at the periphery of N-isopropylacrylamide-co-acrylic-acid microgels at high temperatures. <i>Physical Review E</i> , 2015 , 92, 030302	3.6 2.4	7666
62 61 60 59	Rheology of capillary foams. <i>Soft Matter</i> , 2020 , 16, 6725-6732 Optical Microscopy of Soft Matter Systems 2016 , 165-186 Segregation of mass at the periphery of N-isopropylacrylamide-co-acrylic-acid microgels at high temperatures. <i>Physical Review E</i> , 2015 , 92, 030302 Celloidosomes via glass-based microfluidics. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 114006 State diagram for the electrostatic adsorption of charged colloids on confining walls: simulation	3.6 2.4 3	76666

(2021-2018)

55	Extreme thermodynamics with polymer gel tori: Harnessing thermodynamic instabilities to induce large-scale deformations. <i>Physical Review E</i> , 2018 , 98, 020501	2-4	6
54	Curved boundaries and chiral instabilities - two sources of twist in homeotropic nematic tori. <i>Soft Matter</i> , 2019 , 15, 1210-1214	,.6	5
53	Rheology of Soft Materials 2016 , 149-164		5
52	Melting and Geometric Frustration in Temperature-Sensitive Colloids 2011 , 229-281		5
51	Emission modes in electro co-flow. <i>Physics of Fluids</i> , 2019 , 31, 082009	l·4	4
50	Phagocyte-Inspired Smart Microcapsules. <i>ACS Macro Letters</i> , 2019 , 8, 421-426	5.6	4
49	Determination of Microgel Structure by Small-Angle Neutron Scattering 2011 , 117-132		4
48	Structure and Thermodynamics of Ionic Microgels 2011 , 163-193		4
47	Nonlinear effects in the stability of highly charged colloidal suspensions. <i>Physical Review E</i> , 2001 , 64, 032401	4	4
46	Colloidal Gelation 2016 , 279-292		4
45	Simulating optical polarizing microscopy textures using Jones calculus: a review exemplified with nematic liquid crystal tori. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 213001	;	3
44	Activity effects on the nonlinear mechanical properties of fire-ant aggregations. <i>Physical Review E</i> , 2020 , 102, 012602	4	3
43	Defect transitions in nematic liquid-crystal capillary bridges. <i>Physical Review E</i> , 2018 , 97, 040701	4	3
42	Crystals and Liquid Crystals Confined to Curved Geometries 2016 , 369-386		3
41	Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets. <i>Physical Review Letters</i> , 2017 , 118, 2645	iQ ₁ 1	3
40	Particle migration induced by confinement of colloidal suspensions along the gravitational direction. <i>Physical Review E</i> , 2006 , 74, 051404	4	3
39	Orientational Correlations in Active and Passive Nematic Defects. <i>Physical Review Letters</i> , 2021 , 127, 197801	′·4	3
38	Internal structure of ultralow-crosslinked microgels: From uniform deswelling to phase separation. Physical Review E, 2021 , 103, 022614	·4	3

37	Teaching Rayleigh Plateau instabilities in the laboratory. European Journal of Physics, 2015, 36, 055023	0.8	2
36	Toroidal Droplets: Growth Rates, Dispersion Relations, and Behavior in the Thick-Torus Limit. <i>Langmuir</i> , 2018 , 34, 1218-1224	4	2
35	Colloidal Crystallization 2016 , 203-248		2
34	Yielding, Flow, and Slip in Microgel Suspensions: From Microstructure to Macroscopic Rheology 2011 , 283-309		2
33	Exploiting the Optical Properties of Microgels and Hydrogels as Microlenses and Photonic Crystals in Sensing Applications 2011 , 355-374		2
32	Microgels for Oil Recovery 2011 , 407-422		2
31	Polymerization Kinetics of Microgel Particles 2011 , 33-51		2
30	Coaxial Electrospinning for Nanostructured Advanced Materials. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 948, 1		2
29	Scattering Techniques 2016 , 131-148		2
28	An Introduction to the Physics of Liquid Crystals 2016 , 307-340		2
28 27	An Introduction to the Physics of Liquid Crystals 2016 , 307-340 Entangled Granular Media 2016 , 341-354		2
27	Entangled Granular Media 2016 , 341-354	2.4	2
27 26	Entangled Granular Media 2016 , 341-354 Nematics on Curved Surfaces © Computer Simulations of Nematic Shells 2016 , 387-402 Polarized epifluorescence microscopy and the imaging of nematic liquid crystals in highly curved	2.4	2
27 26 25	Entangled Granular Media 2016, 341-354 Nematics on Curved Surfaces © Computer Simulations of Nematic Shells 2016, 387-402 Polarized epifluorescence microscopy and the imaging of nematic liquid crystals in highly curved geometries. Physical Review E, 2020, 101, 052703 Coherence-enhanced diffusion filtering applied to partially-ordered fluids. Molecular Physics, 2020,	·	2 2 1
27 26 25 24	Entangled Granular Media 2016, 341-354 Nematics on Curved Surfaces © Computer Simulations of Nematic Shells 2016, 387-402 Polarized epifluorescence microscopy and the imaging of nematic liquid crystals in highly curved geometries. Physical Review E, 2020, 101, 052703 Coherence-enhanced diffusion filtering applied to partially-ordered fluids. Molecular Physics, 2020, 118, e1725167	1.7	2 2 1
27 26 25 24 23	Entangled Granular Media 2016, 341-354 Nematics on Curved Surfaces [Computer Simulations of Nematic Shells 2016, 387-402 Polarized epifluorescence microscopy and the imaging of nematic liquid crystals in highly curved geometries. Physical Review E, 2020, 101, 052703 Coherence-enhanced diffusion filtering applied to partially-ordered fluids. Molecular Physics, 2020, 118, e1725167 Breakup dynamics of toroidal droplets in shear-thinning fluids. Physical Review E, 2018, 97, 021101	1.7	2 2 1 1

19	New Functional Microgels from Microfluidics 2011 , 53-70		1
18	Electric Field Effects 2016 , 19-28		1
17	Particles in Electric Fields 2016 , 59-80		1
16	Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. <i>Physical Review E</i> , 2002 , 66,	2.4	1
15	Complexation of Pluronic L62 (EO)-(PO)-(EO)/aerosol-OT (sodium bis(2-ethylhexyl)sulfosuccinate) in aqueous solutions investigated by small angle neutron scattering. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 12524-12531	3.6	О
14	Fluctuations in Particle Sedimentation 2016 , 43-58		О
13	Study of Microemulsion Composition Effect over Phosphorescence Emission of a Polycyclic Aromatic Compounds, 2003 , 23, 237-248	1.3	0
12	Emulsions 2016 , 293-306		Ο
11	Colloidal Dispersions in Shear Flow 2016 , 81-110		0
10	Colloidal Fluids 2016 , 187-202		
9	Drop Generation in Controlled Fluid Flows 2016 , 1-18		
8	Latex Dispersions, Emulsions, and Microgel Particles: Electrokinetic Behavior 2015 , 3614-3628		
7	Crystals of Microgel Particles 2012 , 337-368		
6	Mechanics of Single Microgel Particles 2011 , 311-325		
5	Applications of Biopolymer Microgels 2011 , 423-450		
4	Foams 2016 , 355-368		
3	Colloidal Interactions with Optical Fields: Optical Tweezers 2016 , 111-130		
2	The Glass Transition 2016 , 249-278		

Fluid Flows for Engineering Complex Materials **2016**, 29-42