Felix Waldhauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3011392/publications.pdf

Version: 2024-02-01

53 papers 6,597 citations

30 h-index 53 g-index

55 all docs 55 docs citations

55 times ranked 4329 citing authors

#	Article	IF	CITATIONS
1	A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 2000, 90, 1353-1368.	1.1	2,636
2	Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, 2005, 437, 969-974.	13.7	354
3	Largeâ€scale relocation of two decades of Northern California seismicity using crossâ€correlation and doubleâ€difference methods. Journal of Geophysical Research, 2008, 113, .	3.3	297
4	Juan de Fuca slab geometry and its relation to Wadatiâ€Benioff zone seismicity. Journal of Geophysical Research, 2012, 117, .	3.3	210
5	Radiography of a normal fault system by 64,000 highâ€precision earthquake locations: The 2009 L'Aquila (central Italy) case study. Journal of Geophysical Research: Solid Earth, 2013, 118, 1156-1176.	1.4	192
6	Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations. Journal of Geophysical Research, 2002, 107, ESE 3-1.	3.3	180
7	High-resolution image of Calaveras Fault seismicity. Journal of Geophysical Research, 2002, 107, ESE 5-1-ESE 5-16.	3.3	172
8	A Sea-Floor Spreading Event Captured by Seismometers. Science, 2006, 314, 1920-1922.	6.0	169
9	Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity. Geophysical Research Letters, 2004, 31, .	1.5	147
10	Three-dimensional interface modelling with two-dimensional seismic data: the Alpine crust-mantle boundary. Geophysical Journal International, 1998, 135, 264-278.	1.0	143
11	Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature, 2008, 451, 181-184.	13.7	136
12	Inner Core Differential Motion Confirmed by Earthquake Waveform Doublets. Science, 2005, 309, 1357-1360.	6.0	130
13	Slip-parallel seismic lineations on the Northern Hayward Fault, California. Geophysical Research Letters, 1999, 26, 3525-3528.	1.5	89
14	Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science, 2016, 354, 1395-1399.	6.0	84
15	Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions. Journal of Geophysical Research, 2002, 107, ESE 9-1-ESE 9-19.	3.3	83
16	Near-Real-Time Double-Difference Event Location Using Long-Term Seismic Archives, with Application to Northern California. Bulletin of the Seismological Society of America, 2009, 99, 2736-2748.	1.1	77
17	A narrowly spaced double-seismic zone in the subducting Nazca plate. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	71
18	A California Statewide Three-Dimensional Seismic Velocity Model from Both Absolute and Differential Times. Bulletin of the Seismological Society of America, 2010, 100, 225-240.	1.1	71

#	Article	IF	Citations
19	Machine-Learning-Based High-Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 2021, 1, 11-19.	1.3	68
20	The Applicability of Modern Methods of Earthquake Location. Pure and Applied Geophysics, 2006, 163, 351-372.	0.8	67
21	Pulse of the seafloor: Tidal triggering of microearthquakes at 9°50′N East Pacific Rise. Geophysical Research Letters, 2007, 34, .	1.5	58
22	Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field. Science Advances, 2018, 4, eaao2929.	4.7	58
23	One Magnitude Unit Reduction in Detection Threshold by Cross Correlation Applied to Parkfield (California) and China Seismicity. Bulletin of the Seismological Society of America, 2010, 100, 3224-3238.	1.1	56
24	Splay faults imaged by fluid-driven aftershocks of the 2004 Mw 9.2 Sumatra-Andaman earthquake. Geology, 2012, 40, 243-246.	2.0	47
25	Systematic alongâ€axis tidal triggering of microearthquakes observed at 9°50′N East Pacific Rise. Geophysical Research Letters, 2009, 36, .	1.5	40
26	Dynamics of a seafloor-spreading episode at the East Pacific Rise. Nature, 2016, 540, 261-265.	13.7	39
27	Double-difference relocation of earthquakes in central-western China, 1992–1999. Journal of Seismology, 2005, 9, 241-264.	0.6	38
28	Fineâ€Scale Structure of the 2016–2017 Central Italy Seismic Sequence From Data Recorded at the Italian National Network. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018440.	1.4	38
29	The Recent Volcanic History of Axial Seamount: Geophysical Insights into Past Eruption Dynamics with an Eye Toward Enhanced Observations of Future Eruptions. Oceanography, 2018, 31, 114-123.	0.5	34
30	Backâ€arc extension in the Andaman Sea: Tectonic and magmatic processes imaged by highâ€precision teleseismic doubleâ€difference earthquake relocation. Journal of Geophysical Research: Solid Earth, 2013, 118, 2206-2224.	1.4	32
31	Interrelationships Between Vent Fluid Chemistry, Temperature, Seismic Activity, and Biological Community Structure at a Mussel-Dominated, Deep-Sea Hydrothermal Vent Along the East Pacific Rise. Journal of Shellfish Research, 2008, 27, 177-190.	0.3	31
32	Lop Nor Revisited: Underground Nuclear Explosion Locations, 1976-1996, from Double-Difference Analysis of Regional and Teleseismic Data. Bulletin of the Seismological Society of America, 2004, 94, 1879-1889.	1.1	30
33	Regional and teleseismic doubleâ€difference earthquake relocation using waveform crossâ€correlation and global bulletin data. Journal of Geophysical Research, 2007, 112, .	3.3	29
34	January 2006 seafloorâ€spreading event at 9°50′N, East Pacific Rise: Ridge dike intrusion and transform fault interactions from regional hydroacoustic data. Geochemistry, Geophysics, Geosystems, 2009, 10,	1.0	29
35	Frequencyâ€magnitude distribution of microearthquakes beneath the 9°50′N region of the East Pacific Rise, October 2003 through April 2004. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	25
36	Mechanics of fault reactivation before, during, and after the 2015 eruption of Axial Seamount. Geology, 2018, 46, 447-450.	2.0	25

#	Article	IF	CITATIONS
37	An Intense Earthquake Swarm in the Southernmost Apennines: Fault Architecture from High-Resolution Hypocenters and Focal Mechanisms. Bulletin of the Seismological Society of America, 2015, 105, 3121-3128.	1.1	24
38	Axial Seamount: Periodic tidal loading reveals stress dependence of the earthquake size distribution (b value). Earth and Planetary Science Letters, 2019, 512, 39-45.	1.8	23
39	Seismogenic structure and processes associated with magma inflation and hydrothermal circulation beneath the East Pacific Rise at 9°50′N. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	21
40	Earth's deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes. Earth and Planetary Science Letters, 2019, 521, 25-36.	1.8	20
41	Tidal Triggering of Microearthquakes Over an Eruption Cycle at 9°50'N East Pacific Rise. Geophysical Research Letters, 2018, 45, 1825-1831.	1.5	17
42	Seismotectonics of the 2014 Chiang Rai, Thailand, earthquake sequence. Journal of Geophysical Research: Solid Earth, 2017, 122, 6367-6388.	1.4	15
43	Reference Events for Regional Seismic Phases at IMS Stations in China. Bulletin of the Seismological Society of America, 2004, 94, 2265-2279.	1.1	14
44	The Shear Deformation Zone and the Smoothing of Faults With Displacement. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020447.	1.4	14
45	Fault Planes, Fault Zone Structure and Detachment Fragmentation Resolved With Highâ€Precision Aftershock Locations of the 2016–2017 Central Italy Sequence. Geophysical Research Letters, 2021, 48, e2021GL092918.	1.5	14
46	A Comprehensive Search for Repeating Earthquakes in Northern California: Implications for Fault Creep, Slip Rates, Slip Partitioning, and Transient Stress. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022495.	1.4	14
47	Influence of fortnightly tides on earthquake triggering at the East Pacific Rise at 9°50′N. Journal of Geophysical Research: Solid Earth, 2016, 121, 1262-1279.	1.4	11
48	Precision Seismic Monitoring and Analysis at Axial Seamount Using a Realâ€Time Doubleâ€Difference System. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018796.	1.4	11
49	Persistent fine-scale fault structure and rupture development: A new twist in the Parkfield, California, story. Earth and Planetary Science Letters, 2019, 521, 128-138.	1.8	10
50	A Tale of Two Eruptions: How Data from Axial Seamount Led to a Discovery on the East Pacific Rise. Oceanography, 2018, 31, 124-125.	0.5	5
51	A Joint Inversion for Threeâ€dimensional <i>P</i> and <i>S</i> Wave Velocity Structure and Earthquake Locations Beneath Axial Seamount. Journal of Geophysical Research: Solid Earth, 2019, 124, 12997-13020.	1.4	5
52	Analysis of the 15 December 2017 MwÂ6.5 and the 23 January 2018 MwÂ5.9 Java Earthquakes. Bulletin of the Seismological Society of America, 2020, 110, 3050-3063.	1.1	4
53	The Storfjorden, Svalbard, Earthquake Sequence 2008–2020: Transtensional Tectonics in an Arctic Intraplate Region. Seismological Research Letters, 2021, 92, 2838-2849.	0.8	2