
Parisa Rahimkhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3011056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numerical Algorithms, 2017, 74, 223-245.	1.9	133
2	Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. Journal of Computational and Applied Mathematics, 2017, 309, 493-510.	2.0	130
3	Fractional-order Bernoulli wavelets and their applications. Applied Mathematical Modelling, 2016, 40, 8087-8107.	4.2	82
4	Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numerical Algorithms, 2018, 77, 1283-1305.	1.9	74
5	An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dynamics, 2016, 86, 1649-1661.	5.2	63
6	Fractional-order Bernoulli functions and their applications in solving fractional Fredholem–Volterra integro-differential equations. Applied Numerical Mathematics, 2017, 122, 66-81.	2.1	51
7	A numerical scheme based on Bernoulli wavelets and collocation method for solving fractional partial differential equations with Dirichlet boundary conditions. Numerical Methods for Partial Differential Equations, 2019, 35, 34-59.	3.6	43
8	An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets. Applied Numerical Mathematics, 2019, 145, 1-27.	2.1	34
9	Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz‣egendre wavelets. Optimal Control Applications and Methods, 2018, 39, 1916-1934.	2.1	28
10	Generalized fractional-order Bernoulli–Legendre functions: an effective tool for solving two-dimensional fractional optimal control problems. IMA Journal of Mathematical Control and Information, 2019, 36, 185-212.	1.7	25
11	Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. Journal of Computational and Applied Mathematics, 2020, 365, 112365.	2.0	24
12	A numerical technique for solving fractional variational problems by Müntz–Legendre polynomials. Journal of Applied Mathematics and Computing, 2018, 58, 75-94.	2.5	18
13	Application of Müntz–Legendre polynomials for solving the Bagley–Torvik equation in a large interval. SeMA Journal, 2018, 75, 517-533.	2.0	13
14	Numerical Solution of the Fractional Order Duffing–van der Pol Oscillator Equation by Using Bernoulli Wavelets Collocation Method. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	1.6	10
15	Numerical Studies for Fractional Pantograph Differential Equations Based on Piecewise Fractional-Order Taylor Function Approximations. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 2131-2144.	1.5	10
16	Numerical Solution of Volterra–Hammerstein Delay Integral Equations. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 445-457.	1.5	9
17	The bivariate Müntz wavelets composite collocation method for solving space-time-fractional partial differential equations. Computational and Applied Mathematics, 2020, 39, 1.	2.2	8
18	Orthonormal Bernoulli wavelets neural network method and its application in astrophysics. Computational and Applied Mathematics, 2021, 40, 1.	2.2	6

#	Article	IF	CITATIONS
19	Application of Two-Dimensional Fibonacci Wavelets in Fractional Partial Differential Equations Arising in the Financial Market. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	1.6	6
20	Spectral Methods for Solving Integro-differential Equations and Bibiliometric Analysis. Studies in Systems, Decision and Control, 2021, , 169-214.	1.0	2