Daniel G Anderson

List of Publications by Citations

Source: https://exaly.com/author-pdf/301064/daniel-g-anderson-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 30,402 174 179 h-index g-index citations papers 182 35,736 17.5 7.39 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
179	Knocking down barriers: advances in siRNA delivery. <i>Nature Reviews Drug Discovery</i> , 2009 , 8, 129-38	64.1	2281
178	Non-viral vectors for gene-based therapy. <i>Nature Reviews Genetics</i> , 2014 , 15, 541-55	30.1	2032
177	Delivery materials for siRNA therapeutics. <i>Nature Materials</i> , 2013 , 12, 967-77	27	1245
176	Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. <i>Advanced Drug Delivery Reviews</i> , 2016 , 107, 367-392	18.5	1194
175	CRISPR-Cas9 knockin mice for genome editing and cancer modeling. <i>Cell</i> , 2014 , 159, 440-55	56.2	1089
174	A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. <i>Nature Biotechnology</i> , 2008 , 26, 561-9	44.5	908
173	Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. <i>Nature Biotechnology</i> , 2014 , 32, 551-3	44.5	694
172	Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. <i>Nature Biotechnology</i> , 2004 , 22, 863-6	44.5	672
171	Lipid-like materials for low-dose, in vivo gene silencing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 1864-9	11.5	633
170	Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. <i>Nature Biotechnology</i> , 2016 , 34, 328-33	44.5	610
169	Therapeutic siRNA silencing in inflammatory monocytes in mice. <i>Nature Biotechnology</i> , 2011 , 29, 1005-1	1 0 _{44.5}	594
168	Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. <i>Nature Materials</i> , 2015 , 14, 643-51	27	534
167	CRISPR-mediated direct mutation of cancer genes in the mouse liver. <i>Nature</i> , 2014 , 514, 380-4	50.4	521
166	Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. <i>Nature Biotechnology</i> , 2013 , 31, 653-8	44.5	514
165	Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 2010, 9, 768-78	27	464
164	A combinatorial polymer library approach yields insight into nonviral gene delivery. <i>Accounts of Chemical Research</i> , 2008 , 41, 749-59	24.3	464
163	Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. <i>Nature Medicine</i> , 2016 , 22, 306-11	50.5	430

(2004-2003)

162	Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3153-8	16.4	394
161	In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. <i>Nature Nanotechnology</i> , 2014 , 9, 648-655	28.7	385
160	Managing diabetes with nanomedicine: challenges and opportunities. <i>Nature Reviews Drug Discovery</i> , 2015 , 14, 45-57	64.1	359
159	Advances in the delivery of RNA therapeutics: from concept to clinical reality. <i>Genome Medicine</i> , 2017 , 9, 60	14.4	359
158	Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. <i>Molecular Therapy</i> , 2019 , 27, 710-728	11.7	354
157	Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties. <i>Advanced Materials</i> , 2016 , 28, 86-91	24	340
156	Injectable nano-network for glucose-mediated insulin delivery. ACS Nano, 2013, 7, 4194-201	16.7	333
155	Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. <i>Nature Communications</i> , 2014 , 5, 4277	17.4	320
154	Delivery technologies for genome editing. <i>Nature Reviews Drug Discovery</i> , 2017 , 16, 387-399	64.1	309
153	Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. <i>Nature Biotechnology</i> , 2016 , 34, 345-52	44.5	302
152	Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. <i>Nano Letters</i> , 2017 , 17, 1326-1335	11.5	302
151	Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. <i>ACS Nano</i> , 2013 , 7, 6758-66	16.7	300
150	Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). <i>Molecular Therapy</i> , 2005 , 11, 426-34	11.7	287
149	Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. <i>Nano Letters</i> , 2015 , 15, 7300-6	11.5	279
148	Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 3955-60	11.5	275
147	Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. <i>Nature Biotechnology</i> , 2017 , 35, 1179-1187	44.5	255
146	Combinatorial discovery of polymers resistant to bacterial attachment. <i>Nature Biotechnology</i> , 2012 , 30, 868-875	44.5	254
145	Materials science. Smart biomaterials. <i>Science</i> , 2004 , 305, 1923-4	33.3	254

144	Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. <i>Biomaterials</i> , 2005 , 26, 4892-7	15.6	252
143	A polymer library approach to suicide gene therapy for cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 16028-33	11.5	235
142	Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4133-42	11.5	233
141	Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. <i>Human Gene Therapy</i> , 2015 , 26, 432-42	4.8	226
140	Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 2015, 9, 6644-54	16.7	220
139	Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. <i>Circulation Research</i> , 2016 , 119, 853-64	15.7	2 10
138	Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6948-51	16.4	201
137	Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. <i>Expert Opinion on Drug Delivery</i> , 2017 , 14, 851-864	8	200
136	Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. <i>Nature Biotechnology</i> , 2019 , 37, 1174-1185	44.5	200
135	Materials for non-viral intracellular delivery of messenger RNA therapeutics. <i>Journal of Controlled Release</i> , 2016 , 240, 227-234	11.7	196
134	In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. <i>Journal of the American College of Cardiology</i> , 2014 , 63, 1556-66	15.1	187
133	Small RNA combination therapy for lung cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E3553-61	11.5	177
132	In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano, 2015, 9, 3866-74	16.7	172
131	Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E6639-E6648	11.5	164
130	Strategies, design, and chemistry in siRNA delivery systems. <i>Advanced Drug Delivery Reviews</i> , 2019 , 144, 133-147	18.5	163
129	Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2401-6	11.5	150
128	Polymer-Lipid Nanoparticles for Systemic Delivery of mRNA to the Lungs. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13808-13812	16.4	150
127	Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. <i>Nature Biomedical Engineering</i> , 2018 , 2, 810-821	19	145

126	An elastic second skin. <i>Nature Materials</i> , 2016 , 15, 911-8	27	144
125	Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. <i>Nature Chemical Biology</i> , 2018 , 14, 311-316	11.7	140
124	Silencing or stimulation? siRNA delivery and the immune system. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2011 , 2, 77-96	8.9	137
123	Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 18714-9	11.5	128
122	Materials for stem cell factories of the future. <i>Nature Materials</i> , 2014 , 13, 570-9	27	126
121	Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery. <i>Advanced Materials</i> , 2016 , 28, 2939-43	24	125
120	RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. <i>Science Translational Medicine</i> , 2016 , 8, 342ra80	17.5	123
119	Core-shell hydrogel microcapsules for improved islets encapsulation. <i>Advanced Healthcare Materials</i> , 2013 , 2, 667-72	10.1	118
118	Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. <i>Advanced Materials</i> , 2019 , 31, e1805116	24	118
117	RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration In[Vivo. <i>Molecular Cell</i> , 2019 , 74, 508-520.e4	17.6	111
116	Effect of molecular weight of amine end-modified poly(Emino ester)s on gene delivery efficiency and toxicity. <i>Biomaterials</i> , 2012 , 33, 3594-603	15.6	107
115	Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes. <i>Advanced Materials</i> , 2017 , 29, 1606944	24	105
114	Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. <i>Journal of Experimental Medicine</i> , 2015 , 212, 497-512	16.6	104
113	Rapid Optimization of Gene Delivery by Parallel End-modification of Poly(Elamino ester)s. <i>Molecular Therapy</i> , 2007 , 15, 1306-1312	11.7	103
112	Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2017 , 114, 2060-2065	11.5	101
111	Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 12881-6	11.5	101
110	Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. <i>Molecular Therapy - Nucleic Acids</i> , 2012 , 1, e4	10.7	100
109	Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. <i>EMBO Molecular Medicine</i> , 2015 , 7, 695-713	12	96

108	Small-Molecule End-Groups of Linear Polymer Determine Cell-type Gene-Delivery Efficacy. <i>Advanced Materials</i> , 2009 , 21, 4947-4951	24	96
107	Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. <i>Nature Biomedical Engineering</i> , 2018 , 2, 894-906	19	94
106	Degradable terpolymers with alkyl side chains demonstrate enhanced gene delivery potency and nanoparticle stability. <i>Advanced Materials</i> , 2013 , 25, 1487-93	24	93
105	Dendrimer-Inspired Nanomaterials for the in Vivo Delivery of siRNA to Lung Vasculature. <i>Nano Letters</i> , 2015 , 15, 3008-16	11.5	90
104	Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. Journal of Clinical Investigation, 2017, 127, 3039-3051	15.9	87
103	Biomanufacturing for clinically advanced cell therapies. <i>Nature Biomedical Engineering</i> , 2018 , 2, 362-376	19	86
102	Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. <i>Biomaterials</i> , 2016 , 109, 78-87	15.6	86
101	Adenine base editing in an adult mouse model of tyrosinaemia. <i>Nature Biomedical Engineering</i> , 2020 , 4, 125-130	19	86
100	Comprehensive proteomic characterization of stem cell-derived extracellular matrices. <i>Biomaterials</i> , 2017 , 128, 147-159	15.6	83
99	CRISPR-Cas: a tool for cancer research and therapeutics. <i>Nature Reviews Clinical Oncology</i> , 2019 , 16, 281	1-29.5	83
98	Poly(glycoamidoamine) Brushes Formulated Nanomaterials for Systemic siRNA and mRNA Delivery in Vivo. <i>Nano Letters</i> , 2016 , 16, 842-8	11.5	82
97	In vitro-in vivo translation of lipid nanoparticles for hepatocellular siRNA delivery. <i>ACS Nano</i> , 2012 , 6, 6922-9	16.7	79
96	Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. <i>Biomaterials</i> , 2013 , 34, 5792-801	15.6	79
95	Endothelial TGF-Bignalling drives vascular inflammation and atherosclerosis. <i>Nature Metabolism</i> , 2019 , 1, 912-926	14.6	78
94	Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E6147-E6156	11.5	75
93	Optimization of a Degradable Polymer-Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells. <i>Nano Letters</i> , 2018 , 18, 6449-6454	11.5	74
92	Glucose-responsive insulin by molecular and physical design. <i>Nature Chemistry</i> , 2017 , 9, 937-943	17.6	72
91	Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays. <i>Advanced Materials</i> , 2013 , 25, 2542-7	24	72

(2011-2015)

90	Silencing of CCR2 in myocarditis. <i>European Heart Journal</i> , 2015 , 36, 1478-88	9.5	70
89	Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers. <i>Cancer Cell</i> , 2017 , 31, 576-590.e8	24.3	68
88	Exploiting Electrostatic Interactions in PolymerNanoparticle Hydrogels. <i>ACS Macro Letters</i> , 2015 , 4, 848-852	6.6	68
87	Gene delivery properties of end-modified poly(beta-amino ester)s. <i>Bioconjugate Chemistry</i> , 2007 , 18, 1887-96	6.3	67
86	Uremic Toxin Indoxyl Sulfate Promotes Proinflammatory Macrophage Activation Via the Interplay of OATP2B1 and Dll4-Notch Signaling. <i>Circulation</i> , 2019 , 139, 78-96	16.7	65
85	Ultrasound-mediated gastrointestinal drug delivery. Science Translational Medicine, 2015, 7, 310ra168	17.5	64
84	Neutrophil Responses to Sterile Implant Materials. <i>PLoS ONE</i> , 2015 , 10, e0137550	3.7	64
83	Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. <i>Advanced Materials</i> , 2015 , 27, 4006-12	24	64
82	Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. <i>Gastroenterology</i> , 2017 , 152, 1161-1173.e1	13.3	63
81	Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. <i>ACS Nano</i> , 2020 , 14, 488-497	16.7	63
80	Smart approaches to glucose-responsive drug delivery. <i>Journal of Drug Targeting</i> , 2015 , 23, 651-5	5.4	62
79	Precision cancer mouse models through genome editing with CRISPR-Cas9. <i>Genome Medicine</i> , 2015 , 7, 53	14.4	61
78	Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. <i>Nature Communications</i> , 2020 , 11, 2424	17.4	61
77	Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing. <i>Nano Letters</i> , 2017 , 17, 2015-2020	11.5	60
76	Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14397-401	16.4	59
<i>75</i>	Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. <i>Nature Communications</i> , 2014 , 5, 3869	17.4	57
74	Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression. <i>Molecular Therapy</i> , 2016 , 24, 66-75	11.7	56
73	High throughput discovery of new fouling-resistant surfaces. <i>Journal of Materials Chemistry</i> , 2011 , 21, 693-704		56

72	Photo-response behavior of electrospun nanofibers based on spiropyran-cyclodextrin modified polymer. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9910-9917		55
71	Knockdown and knockout of 🛭 -integrin in hepatocytes impairs liver regeneration through inhibition of growth factor signalling. <i>Nature Communications</i> , 2014 , 5, 3862	17.4	51
7º	Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. <i>Science Advances</i> , 2018 , 4, eaar8409	14.3	51
69	Engineered 3D-printed artificial axons. <i>Scientific Reports</i> , 2018 , 8, 478	4.9	50
68	Ionizable Amino-Polyesters Synthesized via Ring Opening Polymerization of Tertiary Amino-Alcohols for Tissue Selective mRNA Delivery. <i>Advanced Materials</i> , 2018 , 30, e1801151	24	50
67	mRNA Delivery for Therapeutic Anti-HER2 Antibody Expression In Vivo. <i>Molecular Therapy</i> , 2019 , 27, 1415-1423	11.7	49
66	Bacterial attachment to polymeric materials correlates with molecular flexibility and hydrophilicity. <i>Advanced Healthcare Materials</i> , 2015 , 4, 695-701	10.1	48
65	Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	47
64	Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. <i>Transplantation</i> , 2018 , 102, 1223-1229	1.8	47
63	Semi-Automated Synthesis and Screening of a Large Library of Degradable Cationic Polymers for Gene Delivery. <i>Angewandte Chemie</i> , 2003 , 115, 3261-3266	3.6	43
62	A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. <i>Biomaterials</i> , 2015 , 61, 257-65	15.6	42
61	Rapid optimization of gene delivery by parallel end-modification of poly(beta-amino ester)s. <i>Molecular Therapy</i> , 2007 , 15, 1306-12	11.7	40
60	MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. <i>Nature Communications</i> , 2016 , 7, 13597	17.4	39
59	Sequence-Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9529-33	16.4	39
58	Biomaterials for Personalized Cell Therapy. Advanced Materials, 2020, 32, e1902005	24	39
57	Macrophage Notch Ligand Delta-Like 4 Promotes Vein Graft Lesion Development: Implications for the Treatment of Vein Graft Failure. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2015 , 35, 2343-23	38 3	38
56	Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13582-13586	16.4	38
55	Ex vivo cytosolic delivery of functional macromolecules to immune cells. <i>PLoS ONE</i> , 2015 , 10, e0118803	3.7	38

(2022-2020)

54	A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. <i>Nature Biomedical Engineering</i> , 2020 , 4, 814-826	19	37
53	Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20902-20906		37
52	Spatial Control of Gene Expression by Nanocarriers Using Heparin Masking and Ultrasound-Targeted Microbubble Destruction. <i>ACS Nano</i> , 2016 , 10, 7267-78	16.7	36
51	Ultrasound-Mediated Delivery of RNA to Colonic Mucosa of LivelMice. <i>Gastroenterology</i> , 2017 , 152, 115	143.360) 35
50	Rapid, Single-Cell Analysis and Discovery of Vectored mRNA Transfection In Vivo with a loxP-Flanked tdTomato Reporter Mouse. <i>Molecular Therapy - Nucleic Acids</i> , 2018 , 10, 55-63	10.7	34
49	Polymerlipid Nanoparticles for Systemic Delivery of mRNA to the Lungs. <i>Angewandte Chemie</i> , 2016 , 128, 14012-14016	3.6	34
48	Poly(Elmino ester)-co-poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800249	10.1	34
47	High throughput screening for biomaterials discovery. <i>Journal of Controlled Release</i> , 2014 , 190, 115-26	11.7	32
46	Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. <i>Nature Communications</i> , 2020 , 11, 1979	17.4	31
45	Loss of £atenin elicits a cholestatic response and impairs liver regeneration. <i>Scientific Reports</i> , 2014 , 4, 6835	4.9	31
44	Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices. <i>ACS Applied Materials & Devices</i> , 2018 , 10, 139-149	9.5	30
43	Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. <i>Nature Biomedical Engineering</i> , 2020 , 4, 1076-1089	19	29
42	BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. <i>Circulation</i> , 2019 , 139, 2238-2255	16.7	28
41	Stem cell factor gene transfer improves cardiac function after myocardial infarction in swine. <i>Circulation: Heart Failure</i> , 2015 , 8, 167-74	7.6	27
40	Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for CRISPR/Cas-Based Genome Editing. <i>ACS Nano</i> , 2020 , 14, 9243-9262	16.7	27
39	Nanotechnology for in vivo targeted siRNA delivery. <i>Advances in Genetics</i> , 2014 , 88, 37-69	3.3	24
38	Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. <i>Biomaterials</i> , 2014 , 35, 6454-61	15.6	23
37	The clinical progress of mRNA vaccines and immunotherapies <i>Nature Biotechnology</i> , 2022 ,	44.5	22

36	S100A9-RAGE Axis Accelerates Formation of Macrophage-Mediated Extracellular Vesicle Microcalcification in Diabetes Mellitus. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2020 , 40, 1838	9 8 53	21
35	Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray. <i>Soft Matter</i> , 2011 , 7, 7194-7197	3.6	21
34	The NIH Somatic Cell Genome Editing program. <i>Nature</i> , 2021 , 592, 195-204	50.4	21
33	Sequence-Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications. <i>Angewandte Chemie</i> , 2016 , 128, 9681-9685	3.6	18
32	Simultaneous spatiotemporal tracking and oxygen sensing of transient implants in vivo using hot-spot MRI and machine learning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 4861-4870	11.5	17
31	Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers. <i>Biomacromolecules</i> , 2016 , 17, 2830-8	6.9	17
30	Poly(Emino ester)s for DNA delivery. <i>Israel Journal of Chemistry</i> , 2005 , 45, 477-485	3.4	16
29	MicroRNA regulation of the MRN complex impacts DNA damage, cellular senescence, and angiogenic signaling. <i>Cell Death and Disease</i> , 2018 , 9, 632	9.8	15
28	Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs. <i>Angewandte Chemie</i> , 2018 , 130, 13770-13774	3.6	14
27	Poly(Limonene Thioether) Scaffold for Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 813-	21 b.1	12
26	Magnetic Retrieval of Encapsulated Beta Cell Transplants from Diabetic Mice Using Dual-Function MRI Visible and Retrievable Microcapsules. <i>Advanced Materials</i> , 2020 , 32, e1904502	24	11
25	Large-Scale Quantitative Proteomics Identifies the Ubiquitin Ligase Nedd4-1 as an Essential Regulator of Liver Regeneration. <i>Developmental Cell</i> , 2017 , 42, 616-625.e8	10.2	10
24	Ionizable Amphiphilic Dendrimer-Based Nanomaterials with Alkyl-Chain-Substituted Amines for Tunable siRNA Delivery to the Liver Endothelium In Vivo. <i>Angewandte Chemie</i> , 2014 , 126, 14625-14629	3.6	10
23	Microgel encapsulated nanoparticles for glucose-responsive insulin delivery. <i>Biomaterials</i> , 2021 , 267, 120458	15.6	10
22	Downregulation of the Arg/N-degron Pathway Sensitizes Cancer Cells to Chemotherapy In[Vivo. <i>Molecular Therapy</i> , 2020 , 28, 1092-1104	11.7	9
21	RNAi-nanoparticulate manipulation of gene expression as a new functional genomics tool in the liver. <i>Journal of Hepatology</i> , 2016 , 64, 899-907	13.4	9
20	In Vivo RNAi-Mediated eIF3m Knockdown Affects Ribosome Biogenesis and Transcription but Has Limited Impact on mRNA-Specific Translation. <i>Molecular Therapy - Nucleic Acids</i> , 2020 , 19, 252-266	10.7	9
19	Lipidoid mRNA Nanoparticles for Myocardial Delivery in Rodents. <i>Methods in Molecular Biology</i> , 2017 , 1521, 153-166	1.4	8

(2011-2015)

18	Engineering Synthetically Modified Insulin for Glucose-Responsive Diabetes Therapy. <i>Expert Review of Endocrinology and Metabolism</i> , 2015 , 10, 483-489	4.1	8
17	Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	8
16	Frontline Science: Splenic progenitors aid in maintaining high neutrophil numbers at sites of sterile chronic inflammation. <i>Journal of Leukocyte Biology</i> , 2016 , 100, 253-60	6.5	7
15	Chemical Tuning of Fibers Drawn from Extensible Hyaluronic Acid Networks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19715-19721	16.4	7
14	Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. <i>Biomaterials</i> , 2021 , 275, 120966	15.6	6
13	Cytosolic delivery of siRNA by ultra-high affinity dsRNA binding proteins. <i>Nucleic Acids Research</i> , 2017 , 45, 7602-7614	20.1	5
12	Systems Approach to Discovery of Therapeutic Targets for Vein Graft Disease: PPARPivotally Regulates Metabolism, Activation, and Heterogeneity of Macrophages and Lesion Development. <i>Circulation</i> , 2021 , 143, 2454-2470	16.7	5
11	Polyimide Electrode-Based Electrical Stimulation Impedes Early Stage Muscle Graft Regeneration. <i>Frontiers in Neurology</i> , 2019 , 10, 252	4.1	4
10	mRNA therapeutics: beyond vaccine applications. <i>Trends in Molecular Medicine</i> , 2021 , 27, 923-924	11.5	4
9	Cell Delivery: CoreBhell Hydrogel Microcapsules for Improved Islets Encapsulation (Adv. Healthcare Mater. 5/2013). <i>Advanced Healthcare Materials</i> , 2013 , 2, 768-768	10.1	3
8	Gene Delivery: Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium (Adv. Mater. 8/2019). <i>Advanced Materials</i> , 2019 , 31, 1970053	24	3
7	Conducting Polymers: Stretchable Polymeric Multielectrode Array for Conformal Neural Interfacing (Adv. Mater. 9/2014). <i>Advanced Materials</i> , 2014 , 26, 1310-1310	24	1
6	Selective targeting of MYC mRNA by stabilized antisense oligonucleotides. <i>Oncogene</i> , 2021 , 40, 6527-6	532	1
5	Identification of a long non-coding RNA regulator of liver carcinoma cell survival. <i>Cell Death and Disease</i> , 2021 , 12, 178	9.8	1
4	Engineered insulin-polycation complexes for glucose-responsive delivery with high insulin loading. <i>Journal of Controlled Release</i> , 2021 , 338, 71-79	11.7	1
3	Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art <i>Med</i> , 2022 , 3, 167-187	31.7	1
2	Drug Delivery: Lipid-Modified Aminoglycoside Derivatives for In Vivo siRNA Delivery (Adv. Mater. 33/2013). <i>Advanced Materials</i> , 2013 , 25, 4680-4680	24	
1	Regulating Foreign-Body Responses: Development of Cationic Polymer Coatings to Regulate Foreign-Body Responses (Adv. Mater. 24/2011). <i>Advanced Materials</i> , 2011 , 23, H129-H129	24	