
Masanori Osawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3010620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase kinase. Nature Structural Biology, 1999, 6, 819-824.	9.7	228
2	Solution structure of Calmodulin-W-7 complex: the basis of diversity in molecular recognition. Journal of Molecular Biology, 1998, 276, 165-176.	2.0	152
3	Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes and Development, 2007, 21, 3135-3148.	2.7	150
4	The role of calcium-binding proteins in the control of transcription: structure to function. BioEssays, 2002, 24, 625-636.	1.2	132
5	Calcium-regulated DNA Binding and Oligomerization of the Neuronal Calcium-sensing Protein, Calsenilin/DREAM/KChIP3. Journal of Biological Chemistry, 2001, 276, 41005-41013.	1.6	116
6	Structural basis underlying the dual gate properties of KcsA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6216-6221.	3.3	113
7	Target-induced conformational adaptation of calmodulin revealed by the crystal structure of a complex with nematode Ca 2+ /calmodulin-dependent kinase kinase peptide 1 1Edited by K. Morikawa. Journal of Molecular Biology, 2001, 312, 59-68.	2.0	102
8	Mg2+ and Ca2+ Differentially Regulate DNA Binding and Dimerization of DREAM. Journal of Biological Chemistry, 2005, 280, 18008-18014.	1.6	95
9	Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO Journal, 2007, 26, 4168-4176.	3.5	95
10	NMR Analyses of the Interaction between CCR5 and Its Ligand Using Functional Reconstitution of CCR5 in Lipid Bilayers. Journal of the American Chemical Society, 2010, 132, 6768-6777.	6.6	68
11	Structural Insights into Activation of Phosphatidylinositol 4-Kinase (Pik1) by Yeast Frequenin (Frq1). Journal of Biological Chemistry, 2007, 282, 30949-30959.	1.6	63
12	Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochemical and Biophysical Research Communications, 2015, 460, 5-21.	1.0	61
13	ATP-dependent modulation of MgtE in Mg2+ homeostasis. Nature Communications, 2017, 8, 148.	5.8	54
14	Functional Equilibrium of the KcsA Structure Revealed by NMR*. Journal of Biological Chemistry, 2012, 287, 39634-39641.	1.6	50
15	NMR Analyses of the GÎ ² Î ³ Binding and Conformational Rearrangements of the Cytoplasmic Pore of G Protein-activated Inwardly Rectifying Potassium Channel 1 (GIRK1). Journal of Biological Chemistry, 2011, 286, 2215-2223.	1.6	48
16	Evidence for calmodulin inter-domain compaction in solution induced by W-7 binding. FEBS Letters, 1999, 442, 173-177.	1.3	46
17	Molecular Interactions of Yeast Frequenin (Frq1) with the Phosphatidylinositol 4-Kinase Isoform, Pik1. Journal of Biological Chemistry, 2003, 278, 4862-4874.	1.6	45
18	Cross-saturation and transferred cross-saturation experiments. Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, 54, 123-140.	3.9	44

Masanori Osawa

#	Article	IF	CITATIONS
19	Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Nature Communications, 2019, 10, 2008.	5.8	44
20	Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses. Nature Communications, 2017, 8, 14523.	5.8	36
21	Functional dynamics of proteins revealed by solution NMR. Current Opinion in Structural Biology, 2012, 22, 660-669.	2.6	32
22	Structural Basis for Modulation of Gating Property of G Protein-gated Inwardly Rectifying Potassium Ion Channel (GIRK) by i/o-family G Protein α Subunit (Gαi/o). Journal of Biological Chemistry, 2012, 287, 19537-19549.	1.6	30
23	NMR Method for Characterizing Microsecond-to-Millisecond Chemical Exchanges Utilizing Differential Multiple-Quantum Relaxation in High Molecular Weight Proteins. Journal of the American Chemical Society, 2016, 138, 2302-2311.	6.6	27
24	Quantitative Characterization of Tob Interactions Provides the Thermodynamic Basis for Translation Termination-coupled Deadenylase Regulation. Journal of Biological Chemistry, 2010, 285, 27624-27631.	1.6	22
25	Cross-saturation and transferred cross-saturation experiments. Quarterly Reviews of Biophysics, 2014, 47, 143-187.	2.4	22
26	Characterization of the multimeric structure of poly(A)-binding protein on a poly(A) tail. Scientific Reports, 2018, 8, 1455.	1.6	22
27	Evidence for the Direct Interaction of Spermine with the Inwardly Rectifying Potassium Channel. Journal of Biological Chemistry, 2009, 284, 26117-26126.	1.6	19
28	Biological role of the two overlapping poly(A)-binding protein interacting motifs 2 (PAM2) of eukaryotic releasing factor eRF3 in mRNA decay. Rna, 2012, 18, 1957-1967.	1.6	19
29	Nickel binding to NikA: an additional binding site reconciles spectroscopy, calorimetry and crystallography. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 221-229.	2.5	18
30	Structural basis for the inhibition of voltage-dependent K+ channel by gating modifier toxin. Scientific Reports, 2015, 5, 14226.	1.6	18
31	NMR structure of human fibronectin EDA. Journal of Biomolecular NMR, 2001, 21, 281-284.	1.6	16
32	GZD824 Inhibits GCN2 and Sensitizes Cancer Cells to Amino Acid Starvation Stress. Molecular Pharmacology, 2020, 98, 669-676.	1.0	16
33	Amino Acid Selective Cross-Saturation Method for Identification of Proximal Residue Pairs in a Proteinâ~'Protein Complex. Journal of the American Chemical Society, 2008, 130, 12168-12176.	6.6	14
34	Nanodiscs for Structural Biology in a Membranous Environment. Chemical and Pharmaceutical Bulletin, 2019, 67, 321-326.	0.6	12
35	Functional dynamics of cell surface membrane proteins. Journal of Magnetic Resonance, 2014, 241, 86-96.	1.2	11
36	Structural basis for the ethanol action on C-protein–activated inwardly rectifying potassium channel 1 revealed by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3858-3863.	3.3	10

MASANORI OSAWA

#	Article	IF	CITATIONS
37	Functional roles of Mg2+ binding sites in ion-dependent gating of a Mg2+ channel, MgtE, revealed by solution NMR. ELife, 2018, 7, .	2.8	10
38	Backbone resonance assignments for G protein αi3 subunit in the GTP-bound state. Biomolecular NMR Assignments, 2012, 6, 217-220.	0.4	9
39	Structural basis for the binding of the membraneâ€proximal Câ€ŧerminal region of chemokine receptor <scp>CCR</scp> 2 with the cytosolic regulator <scp>FROUNT</scp> . FEBS Journal, 2014, 281, 5552-5566.	2.2	9
40	Identification of novel inhibitors of Keap1/Nrf2 by a promising method combining protein–protein interaction-oriented library and machine learning. Scientific Reports, 2021, 11, 7420.	1.6	9
41	Structure determination of a protein assembly by amino acid selective crossâ€saturation. Proteins: Structure, Function and Bioinformatics, 2011, 79, 179-190.	1.5	8
42	Peptide Toxins Targeting KV Channels. Handbook of Experimental Pharmacology, 2021, 267, 481-505.	0.9	7
43	Backbone resonance assignments for the cytoplasmic regions of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). Biomolecular NMR Assignments, 2009, 3, 125-128.	0.4	5
44	Spatial distribution of cytoplasmic domains of the Mg2+-transporter MgtE, in a solution lacking Mg2+, revealed by paramagnetic relaxation enhancement. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1129-1135.	1.1	5
45	Backbone resonance assignments for G protein αi3 subunit in the GDP-bound state. Biomolecular NMR Assignments, 2014, 8, 237-241.	0.4	5
46	Mechanism of hERG inhibition by gating-modifier toxin, APETx1, deduced by functional characterization. BMC Molecular and Cell Biology, 2021, 22, 3.	1.0	5
47	Paip2A inhibits translation by competitively binding to the RNA recognition motifs of PABPC1 and promoting its dissociation from the poly(A) tail. Journal of Biological Chemistry, 2022, 298, 101844.	1.6	4
48	Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel. Scientific Reports, 2016, 6, 37303.	1.6	2
49	Backbone resonance assignments for the ligand binding subunit of the histidine permease complex (His)) from Escherichia coli, under histidine-bound and unbound states. Biomolecular NMR Assignments, 2010, 4, 17-20.	0.4	1
50	Backbone resonance assignments for the cytoplasmic region of the Mg2+ transporter MgtE in the Mg2+-unbound state. Biomolecular NMR Assignments, 2013, 7, 93-96.	0.4	1
51	Conformational equilibrium shift underlies altered K+ channel gating as revealed by NMR. Nature Communications, 2020, 11, 5168.	5.8	1
52	Comprehensive Approach of 19F Nuclear Magnetic Resonance, Enzymatic, and In Silico Methods for Site-Specific Hit Selection and Validation of Fragment Molecules that Inhibit Methionine γ-Lyase Activity. Journal of Medicinal Chemistry, 2021, 64, 14299-14310.	2.9	1
53	2SBP-05 Structural Basis for Regulation of G Protein-activated Inwardly Rectifying Potassium Channel 1 (GIRK1) by G Proteins(New Development of Structural Cell Biology in Signal) Tj ETQq1 1 0.784314 rgBT /Over Seibutsu Butsuri, 2014, 54, S131.	ock 10 Tf 0.0	50 102 Td (Tr
54	Nuclear Magnetic Resonance Approaches for Characterizing Protein-Protein Interactions. Methods in	0.4	0
54	Molecular Biology, 2018, 1684, 115-128.	0.4	0

#	Article	IF	CITATIONS
55	Solution NMR Study on Functional Mechanism of Membrane Proteins. Seibutsu Butsuri, 2013, 53, 236-241.	0.0	Ο
56	CHAPTER 26. Large Protein Complexes Revealed by Solution-State NMR: G Proteins and G Protein-Activated Inwardly Rectifying Potassium Ion Channel. New Developments in NMR, 2014, , 501-532.	0.1	0

5