Patricia A Bradford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3010567/publications.pdf

Version: 2024-02-01

100 papers 10,965 citations

50 h-index 94 g-index

100 all docs

100 docs citations

100 times ranked 9078 citing authors

#	Article	IF	CITATIONS
1	Extended-Spectrum \hat{I}^2 -Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clinical Microbiology Reviews, 2001, 14, 933-951.	5.7	2,099
2	\hat{l}^2 -Lactams and \hat{l}^2 -Lactamase Inhibitors: An Overview. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a025247.	2.9	663
3	Ceftriaxone-Resistant Salmonella Infection Acquired by a Child from Cattle. New England Journal of Medicine, 2000, 342, 1242-1249.	13.9	481
4	Emergence of Carbapenem-Resistant Klebsiella Species Possessing the Class A Carbapenem-Hydrolyzing KPC-2 and Inhibitor-Resistant TEM-30 Â-Lactamases in New York City. Clinical Infectious Diseases, 2004, 39, 55-60.	2.9	453
5	Epidemiology of β-Lactamase-Producing Pathogens. Clinical Microbiology Reviews, 2020, 33, .	5.7	425
6	Multiple Antibiotic–Resistant <emph type="ITAL">Klebsiella</emph> and <emph TYPE="ITAL">Escherichia coli in Nursing Homes. JAMA - Journal of the American Medical Association, 1999, 281, 517.</emph 	3.8	424
7	Interplay between \hat{I}^2 -lactamases and new \hat{I}^2 -lactamase inhibitors. Nature Reviews Microbiology, 2019, 17, 295-306.	13.6	322
8	Efflux-Mediated Resistance to Tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrobial Agents and Chemotherapy, 2003, 47, 972-978.	1.4	267
9	Extended-spectrum $\langle b \rangle^2 \langle b \rangle$ -lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance, 2021, 3, dlab092.	0.9	256
10	In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. Journal of Antimicrobial Chemotherapy, 2006, 57, 573-576.	1.3	231
11	A Novel MATE Family Efflux Pump Contributes to the Reduced Susceptibility of Laboratory-Derived Staphylococcus aureus Mutants to Tigecycline. Antimicrobial Agents and Chemotherapy, 2005, 49, 1865-1871.	1.4	218
12	AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus–Acinetobacter baumannii complex. Journal of Antimicrobial Chemotherapy, 2007, 59, 1001-1004.	1.3	218
13	Influence of Transcriptional Activator RamA on Expression of Multidrug Efflux Pump AcrAB and Tigecycline Susceptibility in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2005, 49, 1017-1022.	1.4	181
14	Functional, Biophysical, and Structural Bases for Antibacterial Activity of Tigecycline. Antimicrobial Agents and Chemotherapy, 2006, 50, 2156-2166.	1.4	171
15	Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-l²-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2016, 60, 1067-1078.	1.4	171
16	In Vitro and In Vivo Activities of Tigecycline (GAR-936), Daptomycin, and Comparative Antimicrobial Agents against Glycopeptide-Intermediate Staphylococcus aureus and Other Resistant Gram-Positive Pathogens. Antimicrobial Agents and Chemotherapy, 2002, 46, 2595-2601.	1.4	165
17	AcrAB Multidrug Efflux Pump Is Associated with Reduced Levels of Susceptibility to Tigecycline (GAR-936) in Proteus mirabilis. Antimicrobial Agents and Chemotherapy, 2003, 47, 665-669.	1.4	153
18	Global <i>Escherichia coli</i> Sequence Type 131 Clade with <i>bla</i> _{CTX-M-27} Gene. Emerging Infectious Diseases, 2016, 22, 1900-1907.	2.0	146

#	Article	IF	Citations
19	MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2007, 61, 46-53.	1.3	142
20	CTX-M-5, a Novel Cefotaxime-Hydrolyzing \hat{l}^2 -Lactamase from an Outbreak of <i>Salmonella typhimurium</i> in Latvia. Antimicrobial Agents and Chemotherapy, 1998, 42, 1980-1984.	1.4	139
21	<i>In Vitro</i> Activity of Aztreonam-Avibactam against Enterobacteriaceae and Pseudomonas aeruginosa Isolated by Clinical Laboratories in 40 Countries from 2012 to 2015. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	129
22	In Vitro Activity of Tigecycline against Isolates from Patients Enrolled in Phase 3 Clinical Trials of Treatment for Complicated Skin and Skinâ€Structure Infections and Complicated Intraâ€Abdominal Infections. Clinical Infectious Diseases, 2005, 41, S315-S332.	2.9	124
23	Mechanism of Action of the Mannopeptimycins, a Novel Class of Glycopeptide Antibiotics Active against Vancomycin-Resistant Gram-Positive Bacteria. Antimicrobial Agents and Chemotherapy, 2004, 48, 728-738.	1.4	114
24	Determining incidence of extended spectrum β-lactamase producing Enterobacteriaceae, vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus in 38 centres from 17 countries: the PEARLS study 2001–2002. International Journal of Antimicrobial Agents, 2004, 24, 119-124.	1.1	112
25	<i>In Vitro</i> Activity of Aztreonam-Avibactam against a Global Collection of Gram-Negative Pathogens from 2012 and 2013. Antimicrobial Agents and Chemotherapy, 2015, 59, 4239-4248.	1.4	111
26	Genomic Epidemiology of Global Carbapenemase-Producing <i>Enterobacter</i> spp., 2008–2014. Emerging Infectious Diseases, 2018, 24, 1010-1019.	2.0	107
27	Global Incidence of Carbapenemase-Producing < i>Escherichia coli < /i>ST131. Emerging Infectious Diseases, 2014, 20, 1928-1931.	2.0	99
28	Tigecycline MIC Testing by Broth Dilution Requires Use of Fresh Medium or Addition of the Biocatalytic Oxygen-Reducing Reagent Oxyrase To Standardize the Test Method. Antimicrobial Agents and Chemotherapy, 2005, 49, 3903-3909.	1.4	96
29	RamA, a Transcriptional Regulator, and AcrAB, an RND-Type Efflux Pump, are Associated with Decreased Susceptibility to Tigecycline inEnterobacter cloacae. Microbial Drug Resistance, 2007, 13, 1-6.	0.9	95
30	Molecular Epidemiology of a Citywide Outbreak of Extendedâ€Spectrum βâ€Lactamase–ProducingKlebsiella pneumoniaeInfection. Clinical Infectious Diseases, 2002, 35, 834-841.	2.9	89
31	Carbapenemâ€ResistantEscherichia coliHarboringKlebsiella pneumoniaeCarbapenemase βâ€Lactamases Associated with Longâ€Term Care Facilities. Clinical Infectious Diseases, 2008, 46, e127-e130.	2.9	82
32	Further Evidence that a Cell Wall Precursor [C55-MurNAc-(Peptide)-GlcNAc] Serves as an Acceptor in a Sorting Reaction. Journal of Bacteriology, 2002, 184, 2141-2147.	1.0	81
33	Correlation of \hat{l}^2 -Lactamase Production and Colistin Resistance among Enterobacteriaceae Isolates from a Global Surveillance Program. Antimicrobial Agents and Chemotherapy, 2016, 60, 1385-1392.	1.4	81
34	Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrhoeal disease. Journal of Antimicrobial Chemotherapy, 1999, 44, 607-610.	1.3	80
35	AcrAB Efflux Pump Plays a Role in Decreased Susceptibility to Tigecycline in Morganella morganii. Antimicrobial Agents and Chemotherapy, 2005, 49, 791-793.	1.4	80
36	Late stage antibacterial drugs in the clinical pipeline. Current Opinion in Microbiology, 2007, 10, 441-446.	2.3	78

#	Article	IF	CITATIONS
37	Global Dissemination of <i>bla</i> _{KPC} into Bacterial Species beyond Klebsiella pneumoniae and <i>ln Vitro</i> Susceptibility to Ceftazidime-Avibactam and Aztreonam-Avibactam. Antimicrobial Agents and Chemotherapy, 2016, 60, 4490-4500.	1.4	78
38	Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of <i>Neisseria gonorrheae</i> , Including Multi-Drug-Resistant Isolates. ACS Infectious Diseases, 2020, 6, 1332-1345.	1.8	73
39	Occurrence of Tetracycline Resistance Genes among <i>Escherichia coli</i> li> Isolates from the Phase 3 Clinical Trials for Tigecycline. Antimicrobial Agents and Chemotherapy, 2007, 51, 3205-3211.	1.4	71
40	Pharmacokinetics/pharmacodynamics of a \hat{l}^2 -lactam and \hat{l}^2 -lactamase inhibitor combination: a novel approach for aztreonam/avibactam. Journal of Antimicrobial Chemotherapy, 2015, 70, 2618-2626.	1.3	70
41	<i>In Vitro</i> Activity of Ceftazidime-Avibactam and Aztreonam-Avibactam against OXA-48-Carrying Enterobacteriaceae Isolated as Part of the International Network for Optimal Resistance Monitoring (INFORM) Global Surveillance Program from 2012 to 2015. Antimicrobial Agents and Chemotherapy, 2018. 62.	1.4	70
42	<i>In Vitro</i> Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria. Antimicrobial Agents and Chemotherapy, 2015, 59, 467-474.	1.4	67
43	Importance of Clonal Complex 258 and IncF _{K2-like} Plasmids among a Global Collection of Klebsiella pneumoniae with <i>bla</i> _{KPC} . Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	59
44	Clinical Characteristics and Molecular Epidemiology Associated with Imipenemâ€Resistant Klebsiella pneumoniae. Clinical Infectious Diseases, 1999, 29, 352-355.	2.9	58
45	Inactivation of mprF affects vancomycin susceptibility in Staphylococcus aureus. Biochimica Et Biophysica Acta - General Subjects, 2003, 1621, 117-121.	1.1	56
46	Characterization and Sequence Analysis of Extended-Spectrum-Î ² -Lactamase-Encoding Genes from <i>Escherichia coli, Klebsiella pneumoniae</i> , and <i>Proteus mirabilis</i> Isolates Collected during Tigecycline Phase 3 Clinical Trials. Antimicrobial Agents and Chemotherapy, 2009, 53, 465-475.	1.4	56
47	Comparative In Vitro Activities of AC98-6446, a Novel Semisynthetic Glycopeptide Derivative of the Natural Product Mannopeptimycin \hat{I}_\pm , and Other Antimicrobial Agents against Gram-Positive Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2004, 48, 739-746.	1.4	55
48	Diagnostic PCR Analysis of the Occurrence of Methicillin and Tetracycline Resistance Genes among Staphylococcus aureus Isolates from Phase 3 Clinical Trials of Tigecycline for Complicated Skin and Skin Structure Infections. Antimicrobial Agents and Chemotherapy, 2006, 50, 505-510.	1.4	54
49	In vitro antibacterial activities of tigecycline and comparative agents by time-kill kinetic studies in fresh Mueller-Hinton broth. Diagnostic Microbiology and Infectious Disease, 2007, 59, 347-349.	0.8	52
50	Ceftazidime-Resistant Klebsiella pneumoniae and Escherichia coli Isolates Producing TEM-10 and TEM-43 \hat{l}^2 -Lactamases from St. Louis, Missouri. Antimicrobial Agents and Chemotherapy, 1998, 42, 1671-1676.	1.4	51
51	In Vitro and In Vivo Activities of Novel 6-Methylidene Penems as \hat{l}^2 -Lactamase Inhibitors. Antimicrobial Agents and Chemotherapy, 2004, 48, 4589-4596.	1.4	51
52	Antibioticsâ€"From There to Where?. Pathogens and Immunity, 2018, 3, 19.	1.4	51
53	In vitro evaluation of tigecycline and comparative agents in 3049 clinical isolates: 2001 to 2002. Diagnostic Microbiology and Infectious Disease, 2005, 51, 291-295.	0.8	50
54	A Standard Numbering Scheme for Class C \hat{l}^2 -Lactamases. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	50

#	Article	IF	Citations
55	In Vitro Activity of Tigecycline against Staphylococcus epidermidis Growing in an Adherent-Cell Biofilm Model. Antimicrobial Agents and Chemotherapy, 2003, 47, 3967-3969.	1.4	48
56	Genomic epidemiology of global VIM-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 2017, 72, 2249-2258.	1.3	47
57	Real-Time PCR and Statistical Analyses of <i>acrAB</i> and <i>ramA</i> Expression in Clinical Isolates of <i>Klebsiella pneumoniae</i> Antimicrobial Agents and Chemotherapy, 2008, 52, 3430-3432.	1.4	45
58	RT-PCR and Statistical Analyses of <i>adeABC</i> Expression in Clinical Isolates of <i>Acinetobacter calcoaceticusâ€"Acinetobacter baumannii</i> Complex. Microbial Drug Resistance, 2010, 16, 87-89.	0.9	43
59	Effect of Medium Age and Supplementation with the Biocatalytic Oxygen-Reducing Reagent Oxyrase on In Vitro Activities of Tigecycline against Recent Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2005, 49, 3910-3918.	1.4	42
60	Staphylococcus aureus Alpha-Toxin Is Conserved among Diverse Hospital Respiratory Isolates Collected from a Global Surveillance Study and Is Neutralized by Monoclonal Antibody MEDI4893. Antimicrobial Agents and Chemotherapy, 2016, 60, 5312-5321.	1.4	41
61	Identification of Plasmid-Mediated AmpC β-Lactamases in <i>Escherichia coli</i> , <i>Klebsiella</i> spp., and <i>Proteus</i> Species Can Potentially Improve Reporting of Cephalosporin Susceptibility Testing Results. Journal of Clinical Microbiology, 2009, 47, 294-299.	1.8	38
62	Hydrophobic Acetal and Ketal Derivatives of Mannopeptimycin-α and Desmethylhexahydromannopeptimycin-α: Semisynthetic Glycopeptides with Potent Activity Against Gram-Positive Bacteria. Journal of Medicinal Chemistry, 2004, 47, 3487-3490.	2.9	37
63	Identification and Sequence of a tet (M) Tetracycline Resistance Determinant Homologue in Clinical Isolates of Escherichia coli. Journal of Bacteriology, 2006, 188, 7151-7164.	1.0	37
64	Tigecycline: a first in class glycylcycline. Clinical Microbiology Newsletter, 2004, 26, 163-168.	0.4	36
65	Automated Thermal Cycling Is Superior to Traditional Methods for Nucleotide Sequencing of <i>bla</i> _{SHV} Genes. Antimicrobial Agents and Chemotherapy, 1999, 43, 2960-2963.	1.4	34
66	Validation and Reproducibility Assessment of Tigecycline MIC Determinations by Etest. Journal of Clinical Microbiology, 2007, 45, 2474-2479.	1.8	34
67	Identification of CTX-M \hat{l}^2 -lactamases in Escherichia coli from hospitalized patients and residents of long-term care facilities. Diagnostic Microbiology and Infectious Disease, 2010, 66, 402-406.	0.8	34
68	Genomic characterization of IMP and VIM carbapenemase-encoding transferable plasmids of Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 2018, 73, 3034-3038.	1.3	33
69	Molecular Î ² -Lactamase Characterization of Aerobic Gram-Negative Pathogens Recovered from Patients Enrolled in the Ceftazidime-Avibactam Phase 3 Trials for Complicated Intra-abdominal Infections, with Efficacies Analyzed against Susceptible and Resistant Subsets. Antimicrobial Agents and Chemotherapy, 2017. 61.	1.4	31
70	Identification of Compounds That Inhibit Late Steps of Peptidoglycan Synthesis in Bacteria Journal of Antibiotics, 2002, 55, 288-295.	1.0	30
71	Use of Ribotyping To Retrospectively Identify Methicillin-Resistant Staphylococcus aureus Isolates from Phase 3 Clinical Trials for Tigecycline That Are Genotypically Related to Community-Associated Isolates. Antimicrobial Agents and Chemotherapy, 2005, 49, 4521-4529.	1.4	27
72	Pyrosequencing Using the Single-Nucleotide Polymorphism Protocol for Rapid Determination of TEM-and SHV-Type Extended-Spectrum β-Lactamases in Clinical Isolates and Identification of the Novel β-Lactamase Genes <i>bla</i> _{SHV-48} , <i>bla</i> _{SHV-105} , and <i>bla</i> _{TEM-155} . Antimicrobial Agents and Chemotherapy, 2009, 53, 977-986.	1.4	27

#	Article	IF	CITATIONS
73	Efficacy of Piperacillin Combined with the Penem \hat{l}^2 -Lactamase Inhibitor BLI-489 in Murine Models of Systemic Infection. Antimicrobial Agents and Chemotherapy, 2009, 53, 1698-1700.	1.4	26
74	Structural and sequence analysis of class A \hat{l}^2 -lactamases with respect to avibactam inhibition: impact of \hat{l} ©-loop variations. Journal of Antimicrobial Chemotherapy, 2016, 71, 2848-2855.	1.3	26
75	Molecular $\hat{1}^2$ -lactamase characterization of Gram-negative pathogens recovered from patients enrolled in the ceftazidime-avibactam phase 3 trials (RECAPTURE 1 and 2) for complicated urinary tract infections: Efficacies analysed against susceptible and resistant subsets. International Journal of Antimicrobial Agents, 2018, 52, 287-292.	1.1	26
76	<i>In Vitro</i> Activity of Ceftazidime-Avibactam against Isolates in a Phase 3 Open-Label Clinical Trial for Complicated Intra-Abdominal and Urinary Tract Infections Caused by Ceftazidime-Nonsusceptible Gram-Negative Pathogens. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	24
77	In vitroactivity of ceftazidime/avibactam against urinary isolates from patients in a Phase 3 clinical trial programme for the treatment of complicated urinary tract infections. Journal of Antimicrobial Chemotherapy, 2017, 72, dkw561.	1.3	22
78	Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	21
79	Characterization of \hat{l}^2 -Lactamase Content of Ceftazidime-Resistant Pathogens Recovered during the Pathogen-Directed Phase 3 REPRISE Trial for Ceftazidime-Avibactam: Correlation of Efficacy against \hat{l}^2 -Lactamase Producers. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	21
80	Establishment of In Vitro Susceptibility Testing Methodologies and Comparative Activities of Piperacillin in Combination with the Penem \hat{I}^2 -Lactamase Inhibitor BLI-489. Antimicrobial Agents and Chemotherapy, 2009, 53, 370-384.	1.4	20
81	What's new in β-lactamases?. Current Infectious Disease Reports, 2001, 3, 13-19.	1.3	19
82	Comment on: Redefining extended-spectrum Â-lactamases: balancing science and clinical need. Journal of Antimicrobial Chemotherapy, 2009, 64, 212-213.	1.3	18
83	<i>In Vitro</i> Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens. Antimicrobial Agents and Chemotherapy, 2015, 59, 6053-6063.	1.4	18
84	A Systematic Approach to the Selection of the Appropriate Avibactam Concentration for Use with Ceftazidime in Broth Microdilution Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	14
85	<i>In Vitro</i> Activity of Ceftazidime-Avibactam against Isolates from Patients in a Phase 3 Clinical Trial for Treatment of Complicated Intra-abdominal Infections. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	13
86	In vitro activity of omadacycline against pathogens isolated from Mainland China during 2017–2018. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1559-1572.	1.3	11
87	Consensus on β-Lactamase Nomenclature. Antimicrobial Agents and Chemotherapy, 2022, 66, e0033322.	1.4	11
88	Recent Developments in \hat{l}^2 -Lactamases and Inhibitors. Annual Reports in Medicinal Chemistry, 2008, 43, 247-267.	0.5	10
89	The primary pharmacology of ceftazidime/avibactam: <i>iin vivo</i> translational biology and pharmacokinetics/pharmacodynamics (PK/PD). Journal of Antimicrobial Chemotherapy, 2022, 77, 2341-2352.	1.3	9
90	<i>In Vitro</i> Activity of Ceftazidime-Avibactam against Isolates from Respiratory and Blood Specimens from Patients with Nosocomial Pneumonia, Including Ventilator-Associated Pneumonia, in a Phase 3 Clinical Trial. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	8

#	ARTICLE	IF	CITATIONS
91	Determination of MIC Quality Control Ranges for the Novel Gyrase Inhibitor Zoliflodacin. Journal of Clinical Microbiology, 2019, 57, .	1.8	7
92	Effect of Susceptibility Testing Conditions on the In Vitro Antibacterial Activity of ETX0914. Diagnostic Microbiology and Infectious Disease, 2017, 87, 139-142.	0.8	5
93	PROBLEMS WITH DETECTION OF \hat{i}^2 -LACTAM RESISTANCE AMONG NONFASTIDIOUS GRAM-NEGATIVE BACILLI. Infectious Disease Clinics of North America, 1993, 7, 411-424.	1.9	4
94	The primary pharmacology of ceftazidime/avibactam: <i>in vitro</i> translational biology. Journal of Antimicrobial Chemotherapy, 2022, 77, 2321-2340.	1.3	4
95	Resistance of Gram-Negative Bacilli to Antimicrobials. , 2008, , 97-159.		3
96	Tetracyclines. , 2012, , 147-179.		3
97	\hat{I}^2 -Lactamases: Historical Perspectives. , 0, , 65-79.		3
98	Epidemiology of Bacterial Resistance. , 2018, , 299-339.		0
99	mSphere of Influence: the View from the Microbiologists of the Future. MSphere, 2019, 4, .	1.3	0
100	A Tribute to George A. Jacoby. Antimicrobial Agents and Chemotherapy, 2022, , e0049822.	1.4	0