In-Nam Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3010351/publications.pdf

Version: 2024-02-01

279798 315739 1,591 63 23 38 h-index citations g-index papers 63 63 63 2099 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficiency enhancement of a fluorinated wide-bandgap polymer for ternary nonfullerene organic solar cells. Polymer, 2020, 188, 122131.	3.8	10
2	Highâ€Detectivity Greenâ€Selective Allâ€Polymer p–n Junction Photodetectors. Advanced Optical Materials, 2020, 8, 2001038.	7.3	23
3	Synthesis and characterization of a wideâ€bandgap polymer based on perfluorinated and alkylthiolated <scp>benzodithiophene</scp> with a deep highest occupied molecular orbital level for organic photovoltaics. Journal of Polymer Science, 2020, 58, 2755-2763.	3.8	5
4	Synthesis and characterization of the fluorinated thieno [3,4-c] pyrrole-4,6-dione-based donor-acceptor polymers for organic solar cells. Dyes and Pigments, 2019, 160, 403-409.	3.7	8
5	Efficient and hysteresis-less perovskite and organic solar cells by employing donor-acceptor type ï€-conjugated polymer. Organic Electronics, 2019, 72, 18-24.	2.6	25
6	Synthesis and characterization of highly conjugated sideâ€groupâ€substituted benzo[1,2â€ <i>b</i> i>:4,5â€ <i>b</i> àê²]dithiopheneâ€based copolymer for use in organic solar cells. Journal of Polymer Science Part A, 2018, 56, 653-660.	2.3	4
7	Efficient organic photovoltaic cells based on thiazolothiazole and benzodithiophene copolymers with Ï€â€conjugated bridges. Journal of Polymer Science Part A, 2018, 56, 1978-1988.	2.3	6
8	High-performance fluorine-containing BDT-based copolymer for organic solar cells with a high open circuit voltage. Journal of Polymer Science Part A, 2017, 55, 2506-2512.	2.3	13
9	New 1,7â€Disubstituted Perylenediimides as Molecular Acceptors for Organic Solar Cells. Bulletin of the Korean Chemical Society, 2017, 38, 484-492.	1.9	4
10	Synthesis and Characterization of a Soluble A–D–A Molecule Containing a 2D Conjugated Selenopheneâ€Based Side Group for Organic Solar Cells. Macromolecular Rapid Communications, 2017, 38, 1700016.	3.9	8
11	Synthesis of a Zr-Based Metal–Organic Framework with Spirobifluorenetetrabenzoic Acid for the Effective Removal of Nerve Agent Simulants. Inorganic Chemistry, 2017, 56, 12098-12101.	4.0	44
12	Synthesis and characterization of a new phenanthrenequinoxalineâ€based polymer for organic solar cells. Journal of Polymer Science Part A, 2016, 54, 2804-2810.	2.3	7
13	Synthesis and characterization of new low band-gap polymers containing electron-accepting acenaphtho[1,2-c]thiophene-S,S-dioxide groups. Journal of Polymer Science Part A, 2016, 54, 498-506.	2.3	2
14	New benzodithiophene―and benzooxadiazole/benzothiadiazoleâ€based donor–acceptor Ï€â€conjugated polymers for organic photovoltaics. Journal of Polymer Science Part A, 2016, 54, 2668-2679.	2.3	7
15	Impact of the Crystalline Packing Structures on Charge Transport and Recombination via Alkyl Chain Tunability of DPP-Based Small Molecules in Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 12940-12950.	8.0	43
16	Low band gap diketopyrrolopyrrole-based small molecule bulk heterojunction solar cells: influence of terminal side chain on morphology and photovoltaic performance. RSC Advances, 2016, 6, 28658-28665.	3.6	10
17	Concentration-Dependent Pyrene-Driven Self-Assembly in Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene (BDT)–Thienothiophene (TT)–Pyrene Copolymers. Macromolecules, 2015, 48, 3509-3515.	4.8	23
18	Synthesis, Characterization, and Photovoltaic Properties of 4,8-Dithienylbenzo[1,2-⟨i⟩b⟨ i⟩:4,5-⟨i⟩b⟨ i⟩′]dithiophene-Based Donor–Acceptor Polymers with New Polymerization and 2D Conjugation Extension Pathways: A Potential Donor Building Block for High Performance and Stable Inverted Organic Solar Cells. Macromolecules, 2015, 48, 2454-2465.	4.8	26

#	Article	IF	Citations
19	Modulation of optical and electronic properties of quinoxailineâ€based conjugated polymers for organic photovoltaic cells. Journal of Polymer Science Part A, 2015, 53, 1904-1914.	2.3	5
20	Influential effects of π-spacers, alkyl side chains, and various processing conditions on the photovoltaic properties of alkylselenyl substituted benzodithiophene based polymers. Journal of Materials Chemistry C, 2015, 3, 796-808.	5 . 5	23
21	Thieno[3,2-b]thiophene-substituted benzodithiophene in donor-acceptor type semiconducting copolymers: A feasible approach to improve performances of organic photovoltaic cells. Journal of Polymer Science Part A, 2014, 52, 3608-3616.	2.3	16
22	Effect of backbone structures on photovoltaic properties in naphthodithiopheneâ€based copolymers. Journal of Polymer Science Part A, 2014, 52, 305-312.	2.3	5
23	Synthesis of new acenaphtho[1,2-c]thiophene-based low bandgap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells, 2014, 122, 190-196.	6.2	11
24	Highly Conjugated Side-Chain-Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Based Conjugated Polymers for Use in Polymer Solar Cells. Macromolecules, 2014, 47, 97-105.	4.8	50
25	Thieno[3,2- <i>b</i>)thiophene-Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> ?dithiophene as a Promising Building Block for Low Bandgap Semiconducting Polymers for High-Performance Single and Tandem Organic Photovoltaic Cells. Chemistry of Materials, 2014, 26, 1234-1242.	6.7	111
26	Alkoxyphenylthiophene Linked Benzodithiophene Based Medium Band Gap Polymers for Organic Photovoltaics: Efficiency Improvement upon Methanol Treatment Depends on the Planarity of Backbone. Macromolecules, 2014, 47, 7060-7069.	4.8	36
27	Synthesis and Photovoltaic Properties of a New Lowâ€Bandgap Polymer Consisting of Benzodithiophene and Fluorinated Benzoselenadiazole Units. Macromolecular Chemistry and Physics, 2013, 214, 1780-1788.	2.2	11
28	Synthesis and photovolatic properties of new poly(quarterselenophene) and poly(quarterselenophene-alt-quarterthiophene)s. Solar Energy Materials and Solar Cells, 2013, 117, 161-167.	6.2	5
29	New low bandâ€gap semiconducting polymers consisting of 5â€{9 <i>H</i> à€€arbazolâ€9â€yl)benzo[<i>a</i>]phenazine as a new acceptor unit for organic photovoltaic cells. Journal of Polymer Science Part A, 2013, 51, 2354-2365.	2.3	7
30	Development of naphthalene and quinoxalineâ€based donor–acceptor conjugated copolymers for delivering high openâ€circuit voltage in photovoltaic devices. Journal of Polymer Science Part A, 2013, 51, 1843-1851.	2.3	7
31	Photovoltaic performance enhancement using fluoreneâ€based copolymers containing pyrene units. Journal of Polymer Science Part A, 2013, 51, 1512-1519.	2.3	11
32	Synthesis and characterization of regioregular poly(3â€dodecyltellurophene). Journal of Polymer Science Part A, 2013, 51, 2753-2758.	2.3	21
33	New quinoxaline derivatives as accepting units in donor-acceptor type low-band gap polymers for organic photovoltaic cells. Journal of Polymer Science Part A, 2013, 51, 4136-4149.	2.3	22
34	Synthesis and characterization of thermally crosslinkable holeâ€transporting polymers for PLEDs. Journal of Polymer Science Part A, 2013, 51, 5111-5117.	2.3	7
35	Synthesis and Characterization of New Selenophene-Based Donor–Acceptor Low-Bandgap Polymers for Organic Photovoltaic Cells. Macromolecules, 2012, 45, 1303-1312.	4.8	90
36	Synthesis and Characterization of a Novel Naphthodithiophene-Based Copolymer for Use in Polymer Solar Cells. Macromolecules, 2012, 45, 6938-6945.	4.8	48

#	Article	IF	CITATIONS
37	Synthesis and characterization of diselenenoquinoxaline-based donor–acceptor polymers for organic photovoltaic cells. Synthetic Metals, 2012, 162, 873-880.	3.9	3
38	Introduction of Perylene Units for Enhanced Interchain Interaction in Conjugated Polymers for Organic Photovoltaic Devices. Macromolecules, 2012, 45, 2367-2376.	4.8	25
39	Incorporation of Pyrene Units to Improve Hole Mobility in Conjugated Polymers for Organic Solar Cells. Macromolecules, 2012, 45, 8628-8638.	4.8	67
40	New TIPS-substituted benzo[1,2-b:4,5-b′]dithiophene-based copolymers for application in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22224.	6.7	42
41	Synthesis and characterization of new selenopheneâ€based conjugated polymers for organic photovoltaic cells. Journal of Polymer Science Part A, 2012, 50, 551-561.	2.3	16
42	Sideâ€chain effects on phenothiazineâ€based donor–acceptor copolymer properties in organic photovoltaic devices. Journal of Polymer Science Part A, 2012, 50, 649-658.	2.3	19
43	Photovoltaic devices using semiconducting polymers containing headâ€toâ€tailâ€structured bithiophene, pyrene, and benzothiadiazole derivatives. Journal of Polymer Science Part A, 2012, 50, 3415-3424.	2.3	22
44	Highly stable printed polymer field-effect transistors and inverters via polyselenophene conjugated polymers. Journal of Materials Chemistry, 2012, 22, 12774.	6.7	31
45	Synthesis and Photovoltaic Properties of a Low-Band-Gap Copolymer of Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]thiophene and Dithienylquinoxaline. Macromolecules, 2011, 44, 1238-1241.	4.8	32
46	Synthesis and Characterization of Quinoxaline-Based Thiophene Copolymers as Photoactive Layers in Organic Photovoltaic Cells. Bulletin of the Korean Chemical Society, 2011, 32, 417-423.	1.9	8
47	Synthesis and Photovoltaic Properties of Quinoxaline-Based Alternating Copolymers for High-Efficiency Bulk-Heterojunction Polymer Solar Cells. Macromolecules, 2011, 44, 5994-6001.	4.8	63
48	Synthesis and properties of phenothiazylene vinylene and bithiophene-based copolymers for organic thin film transistors. Synthetic Metals, 2011, 161, 72-78.	3.9	11
49	Synthesis and characterization of dithienothiophene/benzothiadiazole based low band gap donor–acceptor copolymers for bulk hetero junction photovoltaic cells. Synthetic Metals, 2011, 161, 1838-1844.	3.9	7
50	Synthesis and characterization of thiazolothiazoleâ€based polymers and their applications in polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 3129-3137.	2.3	22
51	Bulk heterojunction polymer solar cells based on binary and ternary blend systems. Journal of Polymer Science Part A, 2011, 49, 4416-4424.	2.3	21
52	Synthesis and properties of phenothiazylene vinyleneâ€based polymers: New organic semiconductors for fieldâ€effect transistors and solar cells. Journal of Polymer Science Part A, 2010, 48, 635-646.	2.3	19
53	Effects of Bphen Layer as Hole Blocking Material on the Performance of Vertical Type Light Emitting Transistor Using C ₆₀ and MEH-PPV. Molecular Crystals and Liquid Crystals, 2009, 505, 1/[239]-8/[246].	0.9	0
54	Fieldâ€effect transistors based on PPV derivatives as a semiconducting layer. Journal of Polymer Science Part A, 2009, 47, 111-120.	2.3	26

#	Article	IF	CITATIONS
55	New Semiconducting Polymers Containing 3,6-Dimethyl (thieno [3,2- <i>b</i>)thiophene or) Tj ETQq1 1 0.784314 2009, 21, 2650-2660.	4 rgBT /Ov 6.7	erlock 10 T 51
56	New selenophene-based semiconducting copolymers for high performance organic thin-film transistors. Journal of Materials Chemistry, 2009, 19, 3490.	6.7	59
57	New amorphous semiconducting copolymers containing fluorene and thiophene moieties for organic thin-film transistors. Journal of Materials Chemistry, 2008, 18, 1895.	6.7	32
58	New Zn Complex Derivatives for Red OLEDs Host Materials. Molecular Crystals and Liquid Crystals, 2007, 463, 33/[315]-39/[321].	0.9	7
59	New deep-blue emitting materials based on fully substituted ethylene derivatives. Journal of Materials Chemistry, 2007, 17, 4670.	6.7	105
60	White electroluminescence from a single polyfluorene containing bis-DCM units. Journal of Polymer Science Part A, 2007, 45, 3380-3390.	2.3	31
61	Synthesis and characterization of highly twisted and bulky tetraoctyloxybiphenyl-containing polyfluorene copolymers: toward efficient blue polymer light emitting diodes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3810-4.	0.9	0
62	Synthesis and Electroluminescent Properties of Phenothiazyl Derivatives Having Aromatic Moieties. Molecular Crystals and Liquid Crystals, 2006, 462, 135-142.	0.9	1
63	Conjugated Polymers Based on Phenothiazine and Fluorene in Light-Emitting Diodes and Field Effect Transistors. Chemistry of Materials, 2004, 16, 1298-1303.	6.7	117