
Viviane Tabar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3010030/publications.pdf Version: 2024-02-01

VIVIANE TARAD

#	Article	IF	CITATIONS
1	Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genetics, 2019, 51, 202-206.	21.4	2,702
2	Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 2011, 480, 547-551.	27.8	1,603
3	Glioblastoma stem-like cells give rise to tumour endothelium. Nature, 2010, 468, 829-833.	27.8	1,091
4	Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12543-12548.	7.1	922
5	Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 2009, 461, 402-406.	27.8	808
6	Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes and Development, 2008, 22, 152-165.	5.9	604
7	Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nature Biotechnology, 2003, 21, 1200-1207.	17.5	585
8	Differentiation of Embryonic Stem Cell Lines Generated from Adult Somatic Cells by Nuclear Transfer. Science, 2001, 292, 740-743.	12.6	548
9	Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nature Neuroscience, 1998, 1, 290-295.	14.8	495
10	Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnology, 2007, 25, 1468-1475.	17.5	490
11	Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics, 2014, 15, 82-92.	16.3	403
12	Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature, 2019, 565, 654-658.	27.8	361
13	Directed Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Motoneurons. Stem Cells, 2007, 25, 1931-1939.	3.2	316
14	Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science, 2014, 346, 1529-1533.	12.6	312
15	Parthenogenetic Stem Cells in Nonhuman Primates. Science, 2002, 295, 819-819.	12.6	284
16	Inhibition of Notch Signaling in Glioblastoma Targets Cancer Stem Cells via an Endothelial Cell Intermediate. Stem Cells, 2010, 28, 1019-1029.	3.2	284
17	Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12759-12764.	7.1	262
18	Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. Journal of Neuro-Oncology, 2015, 125, 149-156.	2.9	224

#	Article	IF	CITATIONS
19	Reply to "Survival of expanded dopaminergic precursors is critical for clinical trials― Nature Neuroscience, 1998, 1, 537-537.	14.8	203
20	Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature, 2019, 567, 341-346.	27.8	202
21	Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nature Biotechnology, 2005, 23, 601-606.	17.5	178
22	Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors Remyelinate the Brain and Rescue Behavioral Deficits following Radiation. Cell Stem Cell, 2015, 16, 198-210.	11.1	164
23	The role of radiotherapy following gross-total resection of atypical meningiomas. Journal of Neurosurgery, 2012, 117, 679-686.	1.6	160
24	Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro-Oncology, 2015, 17, 289-295.	1.2	149
25	Long-Term Impact of Radiation on the Stem Cell and Oligodendrocyte Precursors in the Brain. PLoS ONE, 2007, 2, e588.	2.5	147
26	The molecular landscape of glioma in patients with Neurofibromatosis 1. Nature Medicine, 2019, 25, 176-187.	30.7	145
27	Therapeutic cloning in individual parkinsonian mice. Nature Medicine, 2008, 14, 379-381.	30.7	116
28	Marked Response of a Hypermutated ACTH-Secreting Pituitary Carcinoma to Ipilimumab and Nivolumab. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3925-3930.	3.6	106
29	Molecular and Clinical Effects of Notch Inhibition in Glioma Patients: A Phase 0/I Trial. Clinical Cancer Research, 2016, 22, 4786-4796.	7.0	95
30	Phase II Study of Bevacizumab, Temozolomide, and Hypofractionated Stereotactic Radiotherapy for Newly Diagnosed Glioblastoma. Clinical Cancer Research, 2014, 20, 5023-5031.	7.0	89
31	Dishevelled 2 Signaling Promotes Self-Renewal and Tumorigenicity in Human Gliomas. Cancer Research, 2011, 71, 7280-7290.	0.9	86
32	Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. , 2000, 59, 301-311.		85
33	BAC Transgenesis in Human Embryonic Stem Cells as a Novel Tool to Define the Human Neural Lineage. Stem Cells, 2009, 27, 521-532.	3.2	75
34	Constructing and Deconstructing Cancers using Human Pluripotent Stem Cells and Organoids. Cell Stem Cell, 2019, 24, 12-24.	11.1	59
35	Discordance between functional magnetic resonance imaging during silent speech tasks and intraoperative speech arrest. Journal of Neurosurgery, 2005, 103, 267-274.	1.6	55
36	Target identification reveals lanosterol synthase as a vulnerability in glioma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7957-7962.	7.1	52

#	Article	IF	CITATIONS
37	Frequency and outcomes of brain metastases in patients with <i>HER2</i> â€mutant lung cancers. Cancer, 2019, 125, 4380-4387.	4.1	51
38	Derivation of Diverse Hormone-Releasing Pituitary Cells from Human Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 858-872.	4.8	50
39	The Role of Extent of Resection in IDH1 Wild-Type or Mutant Low-Grade Gliomas. Neurosurgery, 2018, 82, 808-814.	1.1	50
40	PRESURGICAL EVALUATION OF LANGUAGE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING IN BRAIN TUMOR PATIENTS WITH PREVIOUS SURGERY. Neurosurgery, 2009, 64, 644-653.	1.1	45
41	The relationship between repeat resection and overall survival in patients with glioblastoma: a time-dependent analysis. Journal of Neurosurgery, 2018, 129, 1231-1239.	1.6	40
42	Melanoma brain metastasis presentation, treatment, and outcomes in the age of targeted and immunotherapies. Cancer, 2021, 127, 2062-2073.	4.1	40
43	Multicenter Phase IB Trial of Carboxyamidotriazole Orotate and Temozolomide for Recurrent and Newly Diagnosed Glioblastoma and Other Anaplastic Gliomas. Journal of Clinical Oncology, 2018, 36, 1702-1709.	1.6	39
44	Brachytherapy for brain tumors. Journal of Neuro-Oncology, 2005, 73, 71-86.	2.9	38
45	MEF Promotes Stemness in the Pathogenesis of Gliomas. Cell Stem Cell, 2012, 11, 836-844.	11.1	37
46	Functional Translocation of Broca's Area in a Low-Grade Left Frontal Glioma: Graph Theory Reveals the Novel, Adaptive Network Connectivity. Frontiers in Neurology, 2019, 10, 702.	2.4	37
47	Transsphenoidal Resection of Sellar Tumors Using High-Field Intraoperative Magnetic Resonance Imaging. Skull Base, 2011, 21, 223-232.	0.4	36
48	Adult Human Glioblastomas Harbor Radial Glia-like Cells. Stem Cell Reports, 2020, 14, 338-350.	4.8	35
49	Preoperative Chemoprophylaxis Is Safe in Major Oncology Operations and Effective at Preventing Venous Thromboembolism. Journal of the American College of Surgeons, 2016, 222, 129-137.	0.5	34
50	Thalamic Glioblastoma: Clinical Presentation, Management Strategies, and Outcomes. Neurosurgery, 2018, 83, 76-85.	1.1	31
51	Resting-State Functional Connectivity of the Middle Frontal Gyrus Can Predict Language Lateralization in Patients with Brain Tumors. American Journal of Neuroradiology, 2019, 40, 319-325.	2.4	31
52	EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. Journal of Neuro-Oncology, 2019, 142, 337-345.	2.9	30
53	Retinoic Acid-Mediated Regulation of GLI3 Enables Efficient Motoneuron Derivation from Human ESCs in the Absence of Extrinsic SHH Activation. Journal of Neuroscience, 2015, 35, 11462-11481.	3.6	27
54	Optical bioluminescence imaging of human ES cell progeny in the rodent CNS. Journal of Neurochemistry, 2007, 102, 2029-2039.	3.9	26

#	Article	IF	CITATIONS
55	Predictors of Treatment Response and Survival Outcomes in Meningioma Recurrence with Atypical or Anaplastic Histology. Neurosurgery, 2018, 82, 824-832.	1.1	25
56	Histone Mutations in Cancer. Annual Review of Cancer Biology, 2018, 2, 337-351.	4.5	23
57	Durable 5-year local control for resected brain metastases with early adjuvant SRS: the effect of timing on intended-field control. Neuro-Oncology Practice, 2021, 8, 278-289.	1.6	22
58	Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma. Cancer Gene Therapy, 2015, 22, 1-8.	4.6	21
59	Comparison of Radiographic Approaches to Assess Treatment Response in Pituitary Adenomas: Is RECIST or RANO Good Enough?. Journal of the Endocrine Society, 2019, 3, 1693-1706.	0.2	21
60	Synergism of Checkpoint Inhibitors and Peptide Receptor Radionuclide Therapy in the Treatment of Pituitary Carcinoma. Journal of the Endocrine Society, 2021, 5, bvab133.	0.2	21
61	The effect of surgery on radiation necrosis in irradiated brain metastases: extent of resection and long-term clinical and radiographic outcomes. Journal of Neuro-Oncology, 2021, 153, 507-518.	2.9	20
62	Extended Survival After Surgical Resection for Pituitary Metastases: Clinical Features, Management, and Outcomes of Metastatic Disease to the Sella. Oncologist, 2020, 25, e789-e797.	3.7	19
63	Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma. PLoS ONE, 2016, 11, e0162978.	2.5	19
64	Transgene Excision Has No Impact on In Vivo Integration of Human iPS Derived Neural Precursors. PLoS ONE, 2011, 6, e24687.	2.5	17
65	Perioperative management of endoscopic transsphenoidal pituitary surgery. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2020, 6, 84-93.	1.6	17
66	Long-term clinically relevant rodent model of methotrexate-induced cognitive impairment. Neuro-Oncology, 2020, 22, 1126-1137.	1.2	17
67	Clinical outcomes of patients with limited brain metastases treated with hypofractionated (5 × 6 Gy) conformal radiotherapy. Radiotherapy and Oncology, 2017, 123, 203-208.	0.6	16
68	Approach to the Treatment of a Patient with an Aggressive Pituitary Tumor. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3807-3820.	3.6	16
69	Salvage resection of recurrent previously irradiated brain metastases: tumor control and radiation necrosis dependency on adjuvant re-irradiation. Journal of Neuro-Oncology, 2021, 155, 277-286.	2.9	16
70	Stem cells in clinical practice. Journal of the American College of Surgeons, 2003, 197, 458-478.	0.5	15
71	Brain tumor stem cells. Current Neurology and Neuroscience Reports, 2007, 7, 215-220.	4.2	14
72	Brain Metastases in Pancreatic Ductal Adenocarcinoma: Assessment of Molecular Genotype–Phenotype Features—An Entity With an Increasing Incidence?. Clinical Colorectal Cancer, 2018, 17, e315-e321.	2.3	13

#	ARTICLE	IF	CITATIONS
73	Resting State Functional Connectivity of the Supplementary Motor Area to Motor and Language Networks in Patients with Brain Tumors. Journal of Neuroimaging, 2019, 29, 521-526.	2.0	13
74	Radiographic and clinical outcomes using intraoperative magnetic resonance imaging for transsphenoidal resection of pituitary adenomas. Journal of Neurosurgery, 2021, 134, 1824-1835.	1.6	12
75	Cerebrospinal fluid diversion for leptomeningeal metastasis: palliative, procedural and oncologic outcomes. Journal of Neuro-Oncology, 2021, 154, 301-313.	2.9	8
76	Lack of survival advantage among re-resected elderly glioblastoma patients: a SEER-Medicare study. Neuro-Oncology Advances, 2021, 3, vdaa159.	0.7	7
77	Acute inflammatory reactions to hemostatic materials mimicking post-operative intracranial abscess. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 2014, 1, 5-7.	0.3	6
78	Prior malignancies in patients harboring glioblastoma: an institutional case-study of 2164 patients. Journal of Neuro-Oncology, 2017, 134, 245-251.	2.9	6
79	Parkinson's disease grafts benefit from well-timed growth factor. Nature, 2020, 582, 39-40.	27.8	5
80	Making a Pituitary Gland in a Dish. Cell Stem Cell, 2011, 9, 490-491.	11.1	4
81	Novel sources of stem cells for brain repair. Clinical Neuroscience Research, 2002, 2, 2-10.	0.8	2
82	Endoscopic Resection Followed by Proton Therapy With Pencil Beam Scanning for Skull Base Tumors. Laryngoscope, 2019, 129, 1313-1317.	2.0	2
83	Random nasoseptal flap for revision skull base reconstruction. Journal of Clinical Neuroscience, 2019, 60, 167-169.	1.5	2
84	In Reply: Thalamic Glioblastoma: Clinical Presentation, Management Strategies, and Outcomes. Neurosurgery, 2019, 84, E289-E290.	1.1	1
85	Pituitary gland with suprasellar extension: a normal variant. Journal of Neurosurgery: Pediatrics, 2006, 105, 75-75.	1.3	0
86	718 Dopaminergic Neurons from Adult Somatic Cells via Nuclear Transfer. Neurosurgery, 2001, 49, 511.	1.1	0