Scott Keeney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3009768/publications.pdf

Version: 2024-02-01

		31976	25787
113	14,349	53	108
papers	citations	h-index	g-index
1-0	1-0	1.50	7100
150	150	150	7132
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	YTHDC2 control of gametogenesis requires helicase activity but not m ⁶ A binding. Genes and Development, 2022, 36, 180-194.	5.9	25
2	Triple-helix potential of the mouse genome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , e2203967119.	7.1	8
3	Structural and functional characterization of the Spo11 core complex. Nature Structural and Molecular Biology, 2021, 28, 92-102.	8.2	41
4	yama, a mutant allele of Mov10l1, disrupts retrotransposon silencing and piRNA biogenesis. PLoS Genetics, 2021, 17, e1009265.	3.5	8
5	How do small chromosomes know they are small? Maximizing meiotic break formation on the shortest yeast chromosomes. Current Genetics, 2021, 67, 431-437.	1.7	8
6	DNA-driven condensation assembles the meiotic DNA break machinery. Nature, 2021, 592, 144-149.	27.8	71
7	Concerted cutting by Spo11 illuminates meiotic DNA break mechanics. Nature, 2021, 594, 572-576.	27.8	34
8	Meiosis: Disentangling polyploid chromosomes with supercharged crossover interference. Current Biology, 2021, 31, R1442-R1444.	3.9	0
9	De novo deletions and duplications at recombination hotspots in mouse germlines. Cell, 2021, 184, 5970-5984.e18.	28.9	25
10	Computed structures of core eukaryotic protein complexes. Science, 2021, 374, eabm4805.	12.6	316
11	Editorial: Meiosis: From Molecular Basis to Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 812292.	3.7	1
12	YTHDC2 is essential for pachytene progression and prevents aberrant microtubule-driven telomere clustering in male meiosis. Cell Reports, 2021, 37, 110110.	6.4	24
13	Exo1 recruits Cdc5 polo kinase to MutL \hat{I}^3 to ensure efficient meiotic crossover formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30577-30588.	7.1	28
14	Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes and Development, 2020, 34, 1605-1618.	5.9	35
15	Molecular structures and mechanisms of DNA break processing in mouse meiosis. Genes and Development, 2020, 34, 806-818.	5.9	46
16	Mechanistic Insight into Crossing over during Mouse Meiosis. Molecular Cell, 2020, 78, 1252-1263.e3.	9.7	27
17	Multilayered mechanisms ensure that short chromosomes recombine in meiosis. Nature, 2020, 582, 124-128.	27.8	50
18	shani mutation in mouse affects splicing of Spata22 and leads to impaired meiotic recombination. Chromosoma, 2020, 129, 161-179.	2.2	5

#	Article	lF	Citations
19	Ensuring meiotic DNA break formation in the mouse pseudoautosomal region. Nature, 2020, 582, 426-431.	27.8	73
20	The Configuration of RPA, RAD51, and DMC1 Binding in Meiosis Reveals the Nature of Critical Recombination Intermediates. Molecular Cell, 2020, 79, 689-701.e10.	9.7	87
21	Cyclin B3 is dispensable for mouse spermatogenesis. Chromosoma, 2019, 128, 473-487.	2.2	10
22	REC114 Partner ANKRD31 Controls Number, Timing, and Location of Meiotic DNA Breaks. Molecular Cell, 2019, 74, 1053-1068.e8.	9.7	89
23	Cyclin B3 promotes anaphase I onset in oocyte meiosis. Journal of Cell Biology, 2019, 218, 1265-1281.	5.2	47
24	Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nature Communications, 2019, 10, 970.	12.8	47
25	S1-seq Assay for Mapping Processed DNA Ends. Methods in Enzymology, 2018, 601, 309-330.	1.0	19
26	Shu complex SWS1-SWSAP1 promotes early steps in mouse meiotic recombination. Nature Communications, 2018, 9, 3961.	12.8	49
27	ATR is a multifunctional regulator of male mouse meiosis. Nature Communications, 2018, 9, 2621.	12.8	66
28	Control of meiotic double-strand-break formation by ATM: local and global views. Cell Cycle, 2018, 17, 1155-1172.	2.6	26
29	ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. ELife, $2018, 7, .$	6.0	129
30	ATR is required to complete meiotic recombination in mice. Nature Communications, 2018, 9, 2622.	12.8	41
31	A global view of meiotic double-strand break end resection. Science, 2017, 355, 40-45.	12.6	155
32	Sequencing Spo11 Oligonucleotides for Mapping Meiotic DNA Double-Strand Breaks in Yeast. Methods in Molecular Biology, 2017, 1471, 51-98.	0.9	13
33	Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome Research, 2017, 27, 278-288.	5 . 5	78
34	Histone H3 Threonine 11 Phosphorylation Is Catalyzed Directly by the Meiosis-Specific Kinase Mek1 and Provides a Molecular Readout of Mek1 Activity <i>in Vivo</i> . Genetics, 2017, 207, 1313-1333.	2.9	34
35	Genomic and chromatin features shaping meiotic double-strand break formation and repair in mice. Cell Cycle, 2017, 16, 1870-1884.	2.6	56
36	p53 and TAp63 participate in the recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genetics, 2017, 13, e1006845.	3.5	50

#	Article	IF	CITATIONS
37	rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLoS Genetics, 2017, 13, e1006964.	3.5	56
38	Distinct DNA-binding surfaces in the ATPase and linker domains of $MutL\hat{l}^3$ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair. PLoS Genetics, 2017, 13, e1006722.	3 . 5	34
39	Special issue on "recent advances in meiotic chromosome structure, recombination and segregationâ€. Chromosoma, 2016, 125, 173-175.	2.2	3
40	The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair. Cell, 2016, 167, 695-708.e16.	28.9	240
41	Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) inÂmice. Nature Cell Biology, 2016, 18, 1208-1220.	10.3	145
42	Mechanisms of germ line genome instability. Seminars in Cell and Developmental Biology, 2016, 54, 177-187.	5.0	53
43	Homologous Recombination During Meiosis. , 2016, , 131-151.		8
44	Breaking DNA. Science, 2016, 351, 916-917.	12.6	11
45	High-Resolution Global Analysis of the Influences of Bas1 and Ino4 Transcription Factors on Meiotic DNA Break Distributions in <i>Saccharomyces cerevisiae</i>). Genetics, 2015, 201, 525-542.	2.9	47
46	The ATM Signaling Cascade Promotes Recombination-Dependent Pachytene Arrest in Mouse Spermatocytes. PLoS Genetics, 2015, 11, e1005017.	3 . 5	82
47	Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice. Genes and Development, 2015, 29, 1721-1733.	5.9	39
48	Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science, 2015, 350, 932-937.	12.6	109
49	Mechanism and Regulation of Meiotic Recombination Initiation. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016634.	5.5	357
50	The kinetochore prevents centromere-proximal crossover recombination during meiosis. ELife, 2015, 4,	6.0	108
51	Zip it up to shut it down. Cell Cycle, 2014, 13, 2157-2158.	2.6	4
52	DDK links replication and recombination in meiosis. Cell Cycle, 2014, 13, 3621-3622.	2.6	11
53	Self-Organization of Meiotic Recombination Initiation: General Principles and Molecular Pathways. Annual Review of Genetics, 2014, 48, 187-214.	7.6	220
54	Homologue engagement controls meiotic DNA break number and distribution. Nature, 2014, 510, 241-246.	27.8	186

SCOTT KEENEY

#	Article	IF	CITATION
55	Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics. Nature Genetics, 2014, 46, 1072-1080.	21.4	110
56	Temporospatial Coordination of Meiotic DNA Replication and Recombination via DDK Recruitment to Replisomes. Cell, 2014, 158, 861-873.	28.9	125
57	Dynamics of DOT1L localization and H3K79 methylation during meiotic prophase I in mouse spermatocytes. Chromosoma, 2014, 123, 147-164.	2.2	48
58	Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Research, 2014, 24, 1650-1664.	5.5	92
59	Mouse BAZ1A (ACF1) Is Dispensable for Double-Strand Break Repair but Is Essential for Averting Improper Gene Expression during Spermatogenesis. PLoS Genetics, 2013, 9, e1003945.	3.5	32
60	Meiotic Recombination Initiation in and around Retrotransposable Elements in Saccharomyces cerevisiae. PLoS Genetics, 2013, 9, e1003732.	3.5	32
61	Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes and Development, 2013, 27, 873-886.	5.9	174
62	How much is enough? Control of DNA double-strand break numbers in mouse meiosis. Cell Cycle, 2013, 12, 2719-2720.	2.6	16
63	Scale matters. Cell Cycle, 2012, 11, 1496-1503.	2.6	54
64	Homeostatic control of recombination is implemented progressively in mouse meiosis. Nature Cell Biology, 2012, 14, 424-430.	10.3	213
65	The tricky path to recombining X and Y chromosomes in meiosis. Annals of the New York Academy of Sciences, 2012, 1267, 18-23.	3.8	63
66	Preaching about the converted: how meiotic gene conversion influences genomic diversity. Annals of the New York Academy of Sciences, 2012, 1267, 95-102.	3.8	42
67	A Hierarchical Combination of Factors Shapes the Genome-wide Topography of Yeast Meiotic Recombination Initiation. Cell, 2011, 144, 719-731.	28.9	520
68	ATM controls meiotic double-strand-break formation. Nature, 2011, 479, 237-240.	27.8	248
69	Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nature Cell Biology, 2011, 13, 599-610.	10.3	207
70	Exploiting Spore-Autonomous Fluorescent Protein Expression to Quantify Meiotic Chromosome Behaviors in Saccharomyces cerevisiae. Genetics, 2011, 189, 423-439.	2.9	52
71	Distinct Properties of the XY Pseudoautosomal Region Crucial for Male Meiosis. Science, 2011, 331, 916-920.	12.6	236
72	Expression of Arf Tumor Suppressor in Spermatogonia Facilitates Meiotic Progression in Male Germ Cells. PLoS Genetics, 2011, 7, e1002157.	3.5	27

SCOTT KEENEY

#	Article	IF	CITATIONS
73	Genome destabilization by homologous recombination in the germ line. Nature Reviews Molecular Cell Biology, 2010, 11, 182-195.	37.0	211
74	Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes and Development, 2010, 24, 1201-1207.	5.9	74
75	Mouse TRIP13/PCH2 Is Required for Recombination and Normal Higher-Order Chromosome Structure during Meiosis. PLoS Genetics, 2010, 6, e1001062.	3.5	170
76	Comprehensive, Fine-Scale Dissection of Homologous Recombination Outcomes at a Hot Spot in Mouse Meiosis. Molecular Cell, 2010, 39, 700-710.	9.7	100
77	PCH'ing Together an Understanding of Crossover Control. PLoS Genetics, 2009, 5, e1000576.	3.5	1
78	Mouse HORMAD1 and HORMAD2, Two Conserved Meiotic Chromosomal Proteins, Are Depleted from Synapsed Chromosome Axes with the Help of TRIP13 AAA-ATPase. PLoS Genetics, 2009, 5, e1000702.	3.5	361
79	Histone methylation sets the stage for meiotic DNA breaks. EMBO Journal, 2009, 28, 81-83.	7.8	18
80	Detection of SPO11-Oligonucleotide Complexes from Mouse Testes. Methods in Molecular Biology, 2009, 557, 197-207.	0.9	7
81	Meiosis. Methods in Molecular Biology, 2009, 557, v-vi.	0.9	7
82	Meiosis. Methods in Molecular Biology, 2009, 558, v-vi.	0.9	6
83	End-Labeling and Analysis of Spo11-Oligonucleotide Complexes in Saccharomyces cerevisiae. Methods in Molecular Biology, 2009, 557, 183-195.	0.9	29
84	Gel Electrophoresis Assays for Analyzing DNA Double-Strand Breaks in Saccharomyces cerevisiae at Various Spatial Resolutions. Methods in Molecular Biology, 2009, 557, 117-142.	0.9	49
85	Probing Meiotic Recombination Decisions. Developmental Cell, 2008, 15, 331-332.	7.0	11
86	Regulating the formation of DNA double-strand breaks in meiosis. Genes and Development, 2008, 22, 286-292.	5.9	63
87	ATM Promotes the Obligate XY Crossover and both Crossover Control and Chromosome Axis Integrity on Autosomes. PLoS Genetics, 2008, 4, e1000076.	3.5	116
88	Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. , 2008, 2, 81-123.		271
89	Meiotic crossover hotspots contained in haplotype block boundaries of the mouse genome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13396-13401.	7.1	22
90	Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae. Chromosoma, 2007, 116, 471-486.	2.2	126

#	Article	IF	CITATIONS
91	Molecular Cartography: Mapping the Landscape of Meiotic Recombination. PLoS Biology, 2007, 5, e333.	5.6	15
92	Cyclin-Dependent Kinase Directly Regulates Initiation of Meiotic Recombination. Cell, 2006, 125, 1321-1332.	28.9	138
93	Crossover Homeostasis in Yeast Meiosis. Cell, 2006, 126, 285-295.	28.9	320
94	Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature, 2006, 442, 153-158.	27.8	383
95	Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature, 2005, 436, 1053-1057.	27.8	536
96	Synaptonemal complex formation: where does it start?. BioEssays, 2005, 27, 995-998.	2.5	68
97	Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 737-742.	7.1	207
98	Surveillance of Different Recombination Defects in Mouse Spermatocytes Yields Distinct Responses despite Elimination at an Identical Developmental Stage. Molecular and Cellular Biology, 2005, 25, 7203-7215.	2.3	212
99	Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4519-4524.	7.1	133
100	Where the crossovers are: recombination distributions in mammals. Nature Reviews Genetics, 2004, 5, 413-424.	16.3	295
101	Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO Journal, 2004, 23, 1815-1824.	7.8	77
102	Antiviral Protein Ski8 Is a Direct Partner of Spo11 in Meiotic DNA Break Formation, Independent of Its Cytoplasmic Role in RNA Metabolism. Molecular Cell, 2004, 13, 549-559.	9.7	158
103	ldentification of Residues in Yeast Spo11p Critical for Meiotic DNA Double-Strand Break Formation. Molecular and Cellular Biology, 2002, 22, 1106-1115.	2.3	97
104	Mice deficient for the type II topoisomerase-like DNA transesterase Spo11 show normal immunoglobulin somatic hypermutation and class switching. European Journal of Immunology, 2002, 32, 316-321.	2.9	16
105	Functional Interactions Between <i>SPO11</i> and <i>REC102</i> During Initiation of Meiotic Recombination in <i>Saccharomyces cerevisiae</i> Genetics, 2002, 160, 111-122.	2.9	62
106	Mechanism and control of meiotic recombination initiation. Current Topics in Developmental Biology, 2001, 52, 1-53.	2.2	573
107	Recombinational DNA double-strand breaks in mice precede synapsis. Nature Genetics, 2001, 27, 271-276.	21.4	818
108	Meiotic recombination: Making and breaking go hand in hand. Current Biology, 2001, 11, R45-R48.	3.9	25

SCOTT KEENEY

#	Article	IF	CITATIONS
109	Chromosome Synapsis Defects and Sexually Dimorphic Meiotic Progression in Mice Lacking Spo11. Molecular Cell, 2000, 6, 989-998.	9.7	639
110	Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes and Development, 2000, 14, 493-503.	5.9	209
111	A Mouse Homolog of the Saccharomyces cerevisiae Meiotic Recombination DNA Transesterase Spo11p. Genomics, 1999, 61, 170-182.	2.9	106
112	Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family. Cell, 1997, 88, 375-384.	28.9	1,640
113	⟨b⟩Communication between homologous chromosomes: genetic alterations at a nucleaseâ€hypersensitive site can alter mitotic chromatin structure at that site both in ⟨i⟩cis⟨ i⟩ and in ⟨i⟩trans⟨ i⟩⟨ b⟩⟩. Genes To Cells, 1996, 1, 475-489.	1.2	74