Andrea Rossin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3009589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailoring morphological and chemical properties of covalent triazine frameworks for dual CO2 and H2 adsorption. International Journal of Hydrogen Energy, 2022, 47, 8434-8445.	3.8	12
2	Exohedrally functionalized carbon-based networks as catalysts for electrochemical syntheses. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100579.	3.2	2
3	Coordination polymers of d- and f-elements with (1,4-phenylene)dithiazole dicarboxylic acid. Inorganica Chimica Acta, 2022, 537, 120923.	1.2	1
4	Graphite Felt-Sandwiched Ni/SiC Catalysts for the Induction Versus Joule-Heated Sabatier Reaction: Assessing the Catalyst Temperature at the Nanoscale. ACS Sustainable Chemistry and Engineering, 2022, 10, 622-632.	3.2	12
5	Unsymmetrical nickel (PCN) pincer complexes with a benzothiazole side-arm: Synthesis, characterization and electrochemical properties. Inorganica Chimica Acta, 2021, 517, 120182.	1.2	9
6	Multimodal hybrid 2D networks via the thiol-epoxide reaction on 1T/2H MoS2 polytypes. Materials Chemistry Frontiers, 2021, 5, 3470-3479.	3.2	1
7	Carbon Dioxide Capture and Utilization with Isomeric Forms of Bis(amino)â€Tagged Zinc Bipyrazolate Metal–Organic Frameworks. Chemistry - A European Journal, 2021, 27, 4746-4754.	1.7	11
8	Electrochemical Generation of Pyrazolyl-Pyridyl N-Heterocyclic Carbene Complexes of Nickel. Russian Journal of Electrochemistry, 2021, 57, 134-140.	0.3	8
9	Palladium Nanosheet-Carbon Black Powder Composites for Selective Hydrogenation of Alkynes to Alkenes. ACS Applied Nano Materials, 2021, 4, 2265-2277.	2.4	7
10	Editorial for Special Issue "Functional Coordination Polymers and Metal–Organic Frameworks― Inorganics, 2021, 9, 33.	1.2	0
11	Metal–Organic Frameworks in Italy: From synthesis and advanced characterization to theoretical modeling and applications. Coordination Chemistry Reviews, 2021, 437, 213861.	9.5	10
12	Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier?. Chemical Reviews, 2021, 121, 10559-10665.	23.0	61
13	Benzothiazole- vs. pyrazole-based unsymmetrical (PCN) pincer complexes of nickel(II) as homogeneous catalysts in ethylene oligomerization. Journal of Organometallic Chemistry, 2021, 949, 121951.	0.8	10
14	Bifunctional activation of amine-boranes by the W/Pd bimetallic analogs of "frustrated Lewis pairs― Chemical Science, 2021, 12, 3682-3692.	3.7	13
15	UiO-67-derived bithiophene and bithiazole MIXMOFs for luminescence sensing and removal of contaminants of emerging concern in wastewater. Inorganic Chemistry Frontiers, 2021, 9, 90-102.	3.0	3
16	Ammonia–Borane Dehydrogenation Catalyzed by Dual-Mode Proton-Responsive Ir-CNNH Complexes. Inorganic Chemistry, 2021, 60, 18490-18502.	1.9	9
17	Temperature-Dependent Nitrous Oxide/Carbon Dioxide Preferential Adsorption in a Thiazolium-Functionalized NU-1000 Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 58982-58993.	4.0	14
18	Bis(alkyl) scandium and yttrium complexes coordinated by an amidopyridinate ligand: synthesis, characterization and catalytic performance in isoprene polymerization, hydroelementation and carbon dioxide hydrosilylation. Dalton Transactions, 2020, 49, 638-650.	1.6	15

#	Article	IF	CITATIONS
19	Zirconium Metal–Organic Frameworks Containing a Biselenophene Linker: Synthesis, Characterization, and Luminescent Properties. Inorganic Chemistry, 2020, 59, 15832-15841.	1.9	8
20	Binuclear 3,3′,5,5′-tetramethyl-1H,H-4,4′-bipyrazole Ruthenium(II) complexes: Synthesis, characterization and biological studies. Inorganica Chimica Acta, 2020, 513, 119902.	1.2	10
21	Highly Nickelâ€Loaded γâ€Alumina Composites for a Radiofrequencyâ€Heated, Lowâ€Temperature CO ₂ Methanation Scheme. ChemSusChem, 2020, 13, 5468-5479.	3.6	22
22	Cobalt(II) Bipyrazolate Metal–Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity. Inorganic Chemistry, 2020, 59, 8161-8172.	1.9	29
23	CO2 Electrochemical Reduction by Exohedral N-Pyridine Decorated Metal-Free Carbon Nanotubes. Energies, 2020, 13, 2703.	1.6	9
24	Unsymmetrical pyrazole-based PCN pincer Nill halides: Reactivity and catalytic activity in ethylene oligomerization. Journal of Organometallic Chemistry, 2020, 912, 121163.	0.8	21
25	Benzothiazolium-functionalized NU-1000: a versatile material for carbon dioxide adsorption and cyanide luminescence sensing. Journal of Materials Chemistry C, 2020, 8, 7492-7500.	2.7	22
26	Induction Heating: An Enabling Technology for the Heat Management in Catalytic Processes. ACS Catalysis, 2019, 9, 7921-7935.	5.5	120
27	Computational screening, synthesis and testing of metal–organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Molecular Systems Design and Engineering, 2019, 4, 1000-1013.	1.7	24
28	Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS Applied Materials & Interfaces, 2019, 11, 26956-26969.	4.0	28
29	H2 production from lightweight inorganic hydrides catalyzed by 3d transition metals. International Journal of Hydrogen Energy, 2019, 44, 25746-25776.	3.8	25
30	Imidazoleâ€Bridged Tetrameric Group(IV) Heteroleptic Complexes from the Spontaneous Metalâ€Ligand Assembly of a Potentially <i>N</i> ₄ â€Tetradentate Ligand. European Journal of Inorganic Chemistry, 2019, 2019, 4384-4393.	1.0	3
31	Second Youth of a Metal-Free Dehydrogenation Catalyst: When γ-Al ₂ O ₃ Meets Coke Under Oxygen- and Steam-Free Conditions. ACS Catalysis, 2019, 9, 9474-9484.	5.5	11
32	Engineered Nitrogen-Decorated Carbon Networks for the Metal-Free Catalytic Isomerization of Glucose to Fructose. ACS Sustainable Chemistry and Engineering, 2019, 7, 16959-16963.	3.2	12
33	Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers, 2019, 6, 533-545.	3.0	36
34	Playing with covalent triazine framework tiles for improved CO ₂ adsorption properties and catalytic performance. Beilstein Journal of Nanotechnology, 2019, 10, 1217-1227.	1.5	12
35	Ammonia borane and hydrazine bis(borane) dehydrogenation mediated by an unsymmetrical (PNN) ruthenium pincer hydride: metal–ligand cooperation for hydrogen production. Sustainable Energy and Fuels, 2019, 3, 2583-2596.	2.5	11
36	Hydrogenolysis of Dinuclear PCN R Ligated Pd II μâ€Hydroxides and Their Mononuclear Pd II Hydroxide Analogues. Chemistry - A European Journal, 2019, 25, 9920-9929.	1.7	5

#	Article	IF	CITATIONS
37	Thiazole- and Thiadiazole-Based Metal–Organic Frameworks and Coordination Polymers for Luminescent Applications. Inorganics, 2019, 7, 144.	1.2	22
38	Dioxomolybdenum(VI) Complexes with Salicylamide Ligands: Synthesis, Structure, and Catalysis in the Epoxidation of Olefins under Eco-Friendly Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 221-229.	1.0	10
39	Halogen-Bonding Interactions and Electrochemical Properties of Unsymmetrical Pyrazole Pincer Ni ^{II} Halides: A Peculiar Behavior of the Fluoride Complex (PCN)NiF. ACS Omega, 2019, 4, 1118-1129.	1.6	19
40	Benzoimidazoleâ€Pyridylamido Zirconium and Hafnium Alkyl Complexes as Homogeneous Catalysts for Tandem Carbon Dioxide Hydrosilylation to Methane. ChemCatChem, 2019, 11, 495-510.	1.8	27
41	Palladium(II) pyrazolyl–pyridyl complexes containing a sterically hindered N-heterocyclic carbene moiety for the Suzuki-Miyaura cross-coupling reaction. Inorganica Chimica Acta, 2018, 470, 100-105.	1.2	22
42	Surface Engineering of Chemically Exfoliated MoS ₂ in a "Click― How To Generate Versatile Multifunctional Transition Metal Dichalcogenides-Based Platforms. Chemistry of Materials, 2018, 30, 8257-8269.	3.2	29
43	Amine Boranes Dehydrogenation Mediated by an Unsymmetrical Iridium Pincer Hydride: (PCN) vs (PCP) Improved Catalytic Performance. Organometallics, 2018, 37, 3142-3153.	1.1	32
44	How to teach an old dog new (electrochemical) tricks: aziridine-functionalized CNTs as efficient electrocatalysts for the selective CO ₂ reduction to CO. Journal of Materials Chemistry A, 2018, 6, 16382-16389.	5.2	31
45	Nitroâ€Functionalized Bis(pyrazolate) Metal–Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 13170-13180.	1.7	29
46	Unraveling Surface Basicity and Bulk Morphology Relationship on Covalent Triazine Frameworks with Unique Catalytic and Gas Adsorption Properties. Advanced Functional Materials, 2017, 27, 1605672.	7.8	72
47	(Amido)- and (Chlorido)titanium and -zirconium Complexes Coordinated by ansa -Bis(amidinate) Ligands with a Rigid o -Phenylene Linker. European Journal of Inorganic Chemistry, 2017, 2017, 2736-2744.	1.0	3
48	C ₁ and C _s 2-pyridylethylanilido zirconium(<scp>iv</scp>), yttrium(<scp>iii</scp>) and lutetium(<scp>iii</scp>) complexes: synthesis, characterization and catalytic activity in the isoprene polymerization. New Journal of Chemistry, 2017, 41, 540-551.	1.4	7
49	Metal–Organic Frameworks as Heterogeneous Catalysts in Hydrogen Production from Lightweight Inorganic Hydrides. ACS Catalysis, 2017, 7, 5035-5045.	5.5	88
50	Ammonia Borane Dehydrogenation Catalyzed by (κ ⁴ -EP ₃)Co(H) [EP ₃ = E(CH ₂ CH ₂ Ph ₂) ₃ ; E = N, P] and H ₂ Evolution from Their Interaction with NH Acids. Inorganic Chemistry, 2017, 56, 4296-4307.	1.9	32
51	Pyridine-decorated carbon nanotubes as a metal-free heterogeneous catalyst for mild CO2 reduction to methanol with hydroboranes. Catalysis Science and Technology, 2017, 7, 5833-5837.	2.1	15
52	Zinc Coordination Polymers Containing Isomeric Forms of <i>p</i> â€(Thiazolyl)benzoic Acid: Blueâ€Emitting Materials with a Solvatochromic Response to Water. European Journal of Inorganic Chemistry, 2017, 2017, 4909-4918.	1.0	9
53	Competition between the Hydride Ligands of Two Types in Proton Transfer to [{κ3-P-CH3C(CH2CH2PPh2)3}RuH(I·2-BH4)]. European Journal of Inorganic Chemistry, 2017, 2017, 4673-4682.	1.0	11
54	Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu2(η2-BH4)2] Dichloromethane Solvate. Crystals, 2017, 7, 318.	1.0	13

#	Article	IF	CITATIONS
55	Chemical Functionalization of Carbon Nanomaterials: Bridging the Gap between Simple Carriers and Smart (Metal-free) Catalysts. Chimia, 2017, 71, 568.	0.3	3
56	Dihydrogen Bonding and Proton Transfer from MH and OH Acids to Group 10 Metal Hydrides [(^{<i>t</i>Bu} PCP)MH] [^{<i>t</i>Bu} PCP = l² ³ â€2,6â€(<i>t</i> Bu ₂ PCH ₂) ₂ C _{C₆H_{3M = Ni, Pd]. European Journal of Inorganic Chemistry, 2016, 2016, 1415-1424.}}	ıb ^{1,0}	19
57	Zinc Coordination Polymers Containing the m-(2-thiazolyl)benzoic Acid Spacer: Synthesis, Characterization and Luminescent Properties in Aqueous Solutions. ChemistrySelect, 2016, 1, 1123-1131.	0.7	8
58	Ammonia–Borane and Amine–Borane Dehydrogenation Mediated by Complex Metal Hydrides. Chemical Reviews, 2016, 116, 8848-8872.	23.0	358
59	Chemical functionalization of N-doped carbon nanotubes: a powerful approach to cast light on the electrochemical role of specific N-functionalities in the oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 6226-6236.	2.1	31
60	Two pathways of proton transfer reaction to (triphos)Cu(Î∙ ¹ -BH ₄) via a dihydrogen bond [triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane]. Dalton Transactions, 2016, 45, 9127-9135.	1.6	14
61	Novel yttrium and zirconium catalysts featuring reduced Ar-BIANH ₂ ligands for olefin hydroamination (Ar-BIANH ₂ = bis-arylaminoacenaphthylene). New Journal of Chemistry, 2016, 40, 10285-10293.	1.4	13
62	Aziridine-Functionalized Multiwalled Carbon Nanotubes: Robust and Versatile Catalysts for the Oxygen Reduction Reaction and Knoevenagel Condensation. ACS Applied Materials & Interfaces, 2016, 8, 30099-30106.	4.0	61
63	A Heteroâ€Bifunctional Spacer for the Smart Engineering of Carbonâ€Based Nanostructures. ChemPlusChem, 2015, 80, 704-714.	1.3	10
64	Pyrazole-Based PCN Pincer Complexes of Palladium(II): Mono- and Dinuclear Hydroxide Complexes and Ligand Rollover C–H Activation. Organometallics, 2015, 34, 3998-4010.	1.1	42
65	Structural features and applications of metal–organic frameworks containing thiazole- and thiazole thiazole. The set of the set o	1.3	16
66	Organolanthanide Complexes Supported by Thiazole-Containing Amidopyridinate Ligands: Synthesis, Characterization, and Catalytic Activity in Isoprene Polymerization. Organometallics, 2014, 33, 7125-7134.	1.1	24
67	Metalâ€toâ€Ligand Alkyl Migration Inducing Carbon–Sulfur Bond Cleavage in Dialkyl Yttrium Complexes Supported by Thiazoleâ€Containing Amidopyridinate Ligands: Synthesis, Characterization, and Catalytic Activity in the Intramolecular Hydroamination Reaction. Chemistry - A European Journal, 2014, 20, 3487-3499.	1.7	30
68	1D and 2D Thiazoleâ€Based Copper(II) Coordination Polymers: Synthesis and Applications in Carbon Dioxide Capture. ChemPlusChem, 2014, 79, 406-412.	1.3	18
69	Chemically Functionalized Carbon Nanotubes with Pyridine Groups as Easily Tunable N-Decorated Nanomaterials for the Oxygen Reduction Reaction in Alkaline Medium. Chemistry of Materials, 2014, 26, 3460-3470.	3.2	107
70	Chiral Co(II) Metal–Organic Framework in the Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and Anaerobic Conditions. ACS Catalysis, 2014, 4, 1032-1039.	5.5	53
71	Dihydrogen Bonding in Complex (PP ₃)RuH(η ¹ -BH ₄) Featuring Two Proton-Accepting Hydride Sites: Experimental and Theoretical Studies. Inorganic Chemistry, 2014, 53, 1080-1090.	1.9	21
72	Chemical Hydrogen Storage: Ammonia Borane Dehydrogenation Catalyzed by NP ₃ Ruthenium Hydrides (NP ₃ =N(CH ₂ CH ₂ PPh ₂) ₃). ChemPlusChem, 2014, 79, 1316-1325.	1.3	18

Andrea Rossin

#	Article	IF	CITATIONS
73	Intramolecular Hydroamination Reactions Catalyzed by Neutral and Cationic Groupâ€IV Pyridylamido Complexes. ChemCatChem, 2013, 5, 1142-1151.	1.8	21
74	Catalytic amine-borane dehydrogenation by a PCP-pincer palladium complex: a combined experimental and DFT analysis of the reaction mechanism. Dalton Transactions, 2013, 42, 3533.	1.6	37
75	A Dense Metal–Organic Framework for Enhanced Magnetic Refrigeration. Advanced Materials, 2013, 25, 4653-4656.	11.1	273
76	Tailoring Carbon Nanotube N-Dopants while Designing Metal-Free Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Medium. ACS Catalysis, 2013, 3, 2108-2111.	5.5	91
77	Interaction between a Transition-Metal Fluoride and a Transition-Metal Hydride: Water-Mediated Hydrofluoric Acid Evolution Following Fluoride Solvation. Inorganic Chemistry, 2013, 52, 12616-12623.	1.9	12
78	Group IV Organometallic Compounds Based on Dianionic "Pincer―Ligands: Synthesis, Characterization, and Catalytic Activity in Intramolecular Hydroamination Reactions. Chemistry - A European Journal, 2013, 19, 4906-4921.	1.7	24
79	"Click―on MOFs: A Versatile Tool for the Multimodal Derivatization of N3-Decorated Metal Organic Frameworks. Chemistry of Materials, 2013, 25, 2297-2308.	3.2	53
80	Synthesis, characterization and CO2 uptake of a chiral Co(ii) metal–organic framework containing a thiazolidine-based spacer. Journal of Materials Chemistry, 2012, 22, 10335.	6.7	38
81	Synthesis and Characterization of Terminal [Re(XCO)(CO) ₂ (triphos)] (X=N, P): Isocyanate versus Phosphaethynolate Complexes. Chemistry - A European Journal, 2012, 18, 14805-14811.	1.7	94
82	Amine-templated polymeric Mg formates: crystalline scaffolds exhibiting extensive hydrogen bonding. CrystEngComm, 2012, 14, 4454.	1.3	46
83	Dimerization Mechanism of Bis(triphenylphosphine)copper(I) Tetrahydroborate: Proton Transfer via a Dihydrogen Bond. Inorganic Chemistry, 2012, 51, 6486-6497.	1.9	34
84	Amine-Templated Polymeric Lanthanide Formates: Synthesis, Characterization, and Applications in Luminescence and Magnetism. Inorganic Chemistry, 2012, 51, 6962-6968.	1.9	69
85	Facing Unexpected Reactivity Paths with Zr ^N –Pyridylamido Polymerization Catalysts. Chemistry - A European Journal, 2012, 18, 671-687.	1.7	37
86	Steric control on the redox chemistry of (η5-C9H7)2YbII(THF)2 by 6-aryl substituted iminopyridines. Dalton Transactions, 2011, 40, 10568.	1.6	16
87	Nickel(ii) hydride and fluoride pincer complexes and their reactivity with Lewis acids BX3·L (X = H, L =) Tj ETQq1	1 0.7843 1.6	14 rgBT /Ov
88	Synthesis of Enantiomerically Enriched Amino Sulfide Building Blocks from Acyclic Chiral Amino Allylsilanes. Journal of Organic Chemistry, 2011, 76, 7415-7422.	1.7	6
89	Hydrogen Uptake by {H[Mg(HCOO) ₃]⊃NHMe ₂ } _{â^ž} and Determination of Its H ₂ Adsorption Sites through Monte Carlo Simulations. Langmuir, 2011, 27, 10124-10131.	1.6	21
90	Functionalization of Multiwalled Carbon Nanotubes with Cyclic Nitrones for Materials and Composites: Addressing the Role of CNT Sidewall Defects. Chemistry of Materials, 2011, 23, 1923-1938.	3.2	51

#	Article	IF	CITATIONS
91	Coordination Chemistry of Thiazole-Based Ligands: New Complexes Generating 3D Hydrogen-Bonded Architectures. European Journal of Inorganic Chemistry, 2011, 2011, 539-548.	1.0	23
92	Acid–Base Interaction between Transitionâ€Metal Hydrides: Dihydrogen Bonding and Dihydrogen Evolution. Angewandte Chemie - International Edition, 2011, 50, 1367-1370.	7.2	50
93	Selective synthesis of 2-substituted 4-carboxy oxazoles, thiazoles and thiazolidines from serine or cysteine amino acids. Tetrahedron, 2011, 67, 267-274.	1.0	27
94	Design and Synthesis of Thiazole and Thiazolidine Metallo-Supramolecular Networks. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1312-1315.	0.8	0
95	P ₄ Activation by Late-Transition Metal Complexes. Chemical Reviews, 2010, 110, 4178-4235.	23.0	391
96	Yttriumâ€Amidopyridinate Complexes: Synthesis and Characterization of Yttriumâ€Alkyl and Yttriumâ€Hydrido Derivatives. European Journal of Inorganic Chemistry, 2010, 2010, 608-620.	1.0	36
97	A New Cobalt(II)‣ayered Network Based on Phenyl(carboxymethyl) Phosphinate. European Journal of Inorganic Chemistry, 2010, 2010, 3179-3184.	1.0	19
98	Intramolecular σ-Bond Metathesis/Protonolysis on Zirconium(IV) and Hafnium(IV) Pyridylamido Olefin Polymerization Catalyst Precursors: Exploring Unexpected Reactivity Paths. Inorganic Chemistry, 2010, 49, 6811-6813.	1.9	21
99	Comparative DFT Analysis of Ligand and Solvent Effects on the Mechanism of H ₂ Activation in Water Mediated by Half-Sandwich Complexes [Cp′Ru(PTA) ₂ Cl] (Cp′ =) Tj ETQq1 1 0.784314	rgβT /Ov	erlock 10 Tf
100	Mechanistic Studies on the Interaction of [(κ ³ - <i>P</i> , <i>P</i> , <i>P</i> ,NP ₃)IrH ₃] [NP ₃ = N(CH ₂ CH ₂ PPh ₂) ₃] with HBF ₄ and Fluorinated Alcohols by Combined NMR, IR, and DFT Techniques. Inorganic Chemistry, 2010, 49, 4343-4354	1.9	18
101	Can nitrones functionalize carbon nanotubes?. Chemical Communications, 2010, 46, 252-254.	2.2	28
102	Cyclopentadienyl Ruthenium(II) Complexes with Bridging Alkynylphosphine Ligands: Synthesis and Electrochemical Studies. Chemistry - A European Journal, 2009, 15, 11985-11998.	1.7	20
103	Selective B–H versus N–H Bond Activation in Ammonia Borane by [Ir(dppm) ₂]OTf. European Journal of Inorganic Chemistry, 2009, 2009, 3055-3059.	1.0	44
104	Synthesis and reactivity of rhodium(III) pentamethylcyclopentadienyl complexes of N–B–PTA(BH3): X-ray crystal structures of [Cpâ^—RhCl2{N–B}–PTA(BH3)] and [Cpâ^—Rh{N–B–PTA(BH3)}(η2-CH2=CHPh Journal of Organometallic Chemistry, 2008, 693, 2397-2406.) ф. 8	9
105	Synthesis and characterisation of κ1-P and κ2-P,N palladium(II) complexes of the open cage water soluble aminophosphine PTN. Inorganica Chimica Acta, 2008, 361, 3017-3023.	1.2	7
106	Phase Transitions and CO ₂ Adsorption Properties of Polymeric Magnesium Formate. Crystal Growth and Design, 2008, 8, 3302-3308.	1.4	62
107	Water-Assisted Hâ^'H Bond Splitting Mediated by [CpRu(PTA)2Cl] (PTA=1,3,5-triaza-7-phosphaadamantane). A DFT Analysis. Organometallics, 2007, 26, 3289-3296.	1.1	57
108	Complexes of a gallium heterocycle with transition metal dicyclopentadienyl and cyclopentadienylcarbonyl fragments, and with a dialkylmanganese compound. Dalton Transactions, 2006, , 3313.	1.6	66

#	Article	IF	CITATIONS
109	Synthetic and reaction chemistry of heteroatom stabilized boryl and cationic borylene complexes. Dalton Transactions, 2006, , 399-410.	1.6	48
110	Benzene and Tropilium Metal Complexes. Intra- and Intermolecular Interaction Evidenced by Vibrational Analysis:  The Blue-Shift Hydrogen Bond. Organometallics, 2006, 25, 5024-5030.	1.1	22
111	The Active Role of the Water Solvent in the Regioselective CO Hydrogenation of Unsaturated Aldehydes by [RuH2(mtppms)x] in Basic Media. Organometallics, 2006, 25, 5010-5023.	1.1	52
112	Câ^'H Oxidative Addition of Bisimidazolium Salts to Iridium and Rhodium Complexes, and N-Heterocyclic Carbene Generation. A Combined Experimental and Theoretical Study. Organometallics, 2006, 25, 1120-1134.	1.1	96
113	Crystallographic report: (η5-C5Me5)Fe(CO)2(BOCH2CH2CH2O): an organoiron complex containing the (trimethyleneglycolato)boryl ligand. Applied Organometallic Chemistry, 2005, 19, 181-182.	1.7	2
114	Halide Abstraction as a Route to Cationic Transition-Metal Complexes Containing Two-Coordinate Gallium and Indium Ligand Systems. Organometallics, 2005, 24, 5891-5900.	1.1	53
115	Fe–Ga multiple bonding? Synthesis, spectroscopic and structural characterization of a transition metal complex containing a cationic two-coordinate gallium centre. Chemical Communications, 2004, , 1732-1733.	2.2	50
116	Carbonyl analogues? Analysis of Fe–E (E = B, Al, Ga) bonding in cationic terminal diyl complexes by density functional theory. Dalton Transactions, 2004, , 2649-2654.	1.6	65
117	FeB Double Bonds:Â Synthetic, Structural, and Reaction Chemistry of Cationic Terminal Borylene Complexes. Organometallics, 2004, 23, 2911-2926.	1.1	119
118	Linking of metal centres through boryl ligands: synthesis, spectroscopic and structural characterisation of symmetrically bridged boryl complexes. Dalton Transactions RSC, 2002, , 2020-2026.	2.3	22