

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3009223/publications.pdf

Version: 2024-02-01

		28736	34195
152	11,724	57	103
papers	citations	h-index	g-index
152	152	152	16265
all docs	docs citations	times ranked	citing authors

Yulu

#	Article	IF	CITATIONS
1	Recent advance on Coâ€based materials for polysulfide catalysis toward promoted lithiumâ€sulfur batteries. Nano Select, 2022, 3, 298-319.	1.9	9
2	Nickel clusters accelerating hierarchical zinc indium sulfide nanoflowers for unprecedented visible-light hydrogen production. Journal of Colloid and Interface Science, 2022, 608, 504-512.	5.0	17
3	Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. Journal of Energy Chemistry, 2022, 64, 201-208.	7.1	63
4	Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Applied Catalysis B: Environmental, 2022, 302, 120872.	10.8	35
5	Phase Conversion Accelerating "Znâ€Escape―Effect in ZnSeâ€CFs Heterostructure for High Performance Sodiumâ€ion Half/Full Batteries. Small, 2022, 18, 2105169.	5.2	7
6	Insights on the Corrosion and Degradation of MXenes as Electrocatalysts for Hydrogen Evolution Reaction. ChemCatChem, 2022, 14, .	1.8	7
7	Three-dimensional ordered hierarchically porous carbon materials for high performance Li-Se battery. Journal of Energy Chemistry, 2022, 68, 624-636.	7.1	23
8	The chain-mail Co@C electrocatalyst accelerating one-step solid-phase redox for advanced Li–Se batteries. Journal of Materials Chemistry A, 2022, 10, 8059-8067.	5.2	11
9	Mesoâ€Microporous Nanosheetâ€Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production. Advanced Functional Materials, 2022, 32, .	7.8	37
10	Macro/Mesoporous Carbon/Defective TiO ₂ Composite as a Functional Host for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 2573-2579.	2.5	24
11	Inkjetâ€Printed rGO/binary Metal Oxide Sensor for Predictive Gas Sensing in a Mixed Environment. Advanced Functional Materials, 2022, 32, .	7.8	38
12	Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 70, 236-247.	7.1	66
13	Gradient selenium-doping regulating interfacial charge transfer in zinc sulfide/carbon anode for stable lithium storage. Journal of Colloid and Interface Science, 2022, 619, 42-50.	5.0	5
14	Unprecedented strong and reversible atomic orbital hybridization enables a highly stable Li–S battery. National Science Review, 2022, 9, .	4.6	15
15	New insight into the interface of TiO2/C as nanocomposite electrode for lithium-ion batteries. Journal of Power Sources, 2022, 534, 231406.	4.0	6
16	Adsorptionâ€Catalysisâ€Conversion of Polysulfides in Sandwiched Ultrathin Ni(OH) ₂ â€₽ANI for Stable Lithium–Sulfur Batteries. Small, 2022, 18, .	5.2	18
17	Boosting reaction kinetics and shuttle effect suppression by single crystal MOF-derived N-doped ordered hierarchically porous carbon for high performance Li-Se battery. Science China Materials, 2022, 65, 2975-2988.	3.5	4
18	Dual catalysis-adsorption function modified separator towards high-performance Li-Se battery. Applied Surface Science, 2022, 599, 153932.	3.1	7

#	ARTICLE	IF	CITATIONS
19	Boosting Highly Active Exposed Mo Atoms by Fine-Tuning S-Vacancies of MoS ₂ -Based Materials for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 30746-30759.	4.0	14
20	Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. Journal of Colloid and Interface Science, 2021, 582, 60-69.	5.0	34
21	Single-cell yolk-shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition. National Science Review, 2021, 8, nwaa097.	4.6	23
22	Growing ordered CuO nanorods on 2D Cu/g-C3N4 nanosheets as stable freestanding anode for outstanding lithium storage. Chemical Engineering Journal, 2021, 407, 126941.	6.6	33
23	Interwoven scaffolded porous titanium oxide nanocubes/carbon nanotubes framework for high-performance sodium-ion battery. Journal of Energy Chemistry, 2021, 59, 38-46.	7.1	25
24	n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. Journal of Colloid and Interface Science, 2021, 585, 694-704.	5.0	91
25	Confined synthesis of BiVO ₄ nanodot and ZnO cluster co-decorated 3DOM TiO ₂ for formic acid production from the xylan-based hemicellulose photorefinery. Green Chemistry, 2021, 23, 8124-8130.	4.6	7
26	Probing the Electron Beam-Induced Structural Evolution of Halide Perovskite Thin Films by Scanning Transmission Electron Microscopy. Journal of Physical Chemistry C, 2021, 125, 10786-10794.	1.5	13
27	Embedding tin disulfide nanoparticles in two-dimensional porous carbon nanosheet interlayers for fast-charging lithium-sulfur batteries. Science China Materials, 2021, 64, 2697-2709.	3.5	16
28	Emerging of Heterostructure Materials in Energy Storage: A Review. Advanced Materials, 2021, 33, e2100855.	11.1	308
29	Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage. Journal of Colloid and Interface Science, 2021, 594, 531-539.	5.0	11
30	Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li–Se battery. Journal of Energy Chemistry, 2021, 59, 396-404.	7.1	43
31	Optimizing inner voids in yolk-shell TiO2 nanostructure for high-performance and ultralong-life lithium-sulfur batteries. Chemical Engineering Journal, 2021, 417, 129241.	6.6	42
32	Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation. Journal of Materials Science and Technology, 2021, 83, 179-187.	5.6	52
33	Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au. Applied Catalysis B: Environmental, 2021, 291, 120055.	10.8	47
34	The free-standing N-doped Murray carbon framework with the engineered quasi-optimal Se/C interface for high–Se-loading Li/Na–Se batteries at elevated temperature. Materials Today Energy, 2021, 21, 100808.	2.5	8
35	PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production. Chemical Engineering Journal, 2021, 420, 129695.	6.6	88
36	Tris(trimethylsilyl) borate as electrolyte additive alleviating cathode electrolyte interphase for enhanced lithium-selenium battery. Electrochimica Acta, 2021, 393, 139042.	2.6	12

#	Article	IF	CITATIONS
37	Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production. Journal of Colloid and Interface Science, 2021, 604, 131-140.	5.0	23
38	Unfused vs fused thienoazacoronene-cored perylene diimide oligomer based acceptors for non-fullerene organic solar cells. Dyes and Pigments, 2021, 196, 109833.	2.0	6
39	Light-assisted preparation of heterostructured g-C3N4/ZnO nanorods arrays for enhanced photocatalytic hydrogen performance. Catalysis Today, 2020, 355, 932-936.	2.2	33
40	Hollow nitrogen-doped carbon/sulfur@MnO2 nanocomposite with structural and chemical dual-encapsulation for lithium-sulfur battery. Chemical Engineering Journal, 2020, 381, 122746.	6.6	66
41	A flexible, hierarchically porous PANI/MnO ₂ network with fast channels and an extraordinary chemical process for stable fast-charging lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 2741-2751.	5.2	50
42	Hierarchy in materials for maximized efficiency. National Science Review, 2020, 7, 1626-1630.	4.6	47
43	Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7, 1667-1701.	4.6	164
44	Multifunctional hierarchical mesoporous silica and black phosphorus nanohybrids as chemo-photothermal synergistic agents for enhanced cancer therapy. Nanoscale, 2020, 12, 12578-12588.	2.8	19
45	Machine-intelligent inkjet-printed α-Fe2O3/rCO towards NO2 quantification in ambient humidity. Sensors and Actuators B: Chemical, 2020, 321, 128446.	4.0	20
46	Mesoporous silica nanospheres as nanocarriers for poorly soluble drug itraconazole with high loading capacity and enhanced bioavailability. Microporous and Mesoporous Materials, 2020, 305, 110389.	2.2	21
47	Micronâ€Sized Zeolite Beta Single Crystals Featuring Intracrystal Interconnected Ordered Macroâ€Mesoâ€Microporosity Displaying Superior Catalytic Performance. Angewandte Chemie - International Edition, 2020, 59, 19582-19591.	7.2	61
48	Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance Li-ion batteries. National Science Review, 2020, 7, 1046-1058.	4.6	46
49	Printed gas sensors. Chemical Society Reviews, 2020, 49, 1756-1789.	18.7	216
50	MoSe2 nanosheets as a functional host for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 47, 241-247.	7.1	54
51	An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: insights into the charge storage mechanism and enhanced reaction kinetics. Journal of Materials Chemistry A, 2020, 8, 3450-3458.	5.2	81
52	Bronze TiO2 as a cathode host for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 48, 259-266.	7.1	61
53	Active faceted Cu2O hollow nanospheres for unprecedented adsorption and visible-light degradation of pollutants. Journal of Colloid and Interface Science, 2020, 565, 207-217.	5.0	31
54	Nitrogen-doped porous carbon was prepared from peony shell for the cathode material of lithium‑sulfur battery. Journal of Electroanalytical Chemistry, 2020, 861, 113922.	1.9	23

#	Article	IF	CITATIONS
55	Cadmium Sulfide Inverse Opal for Photocatalytic Hydrogen Production. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1803014-0.	2.2	26
56	In-Situ Growing Mesoporous CuO/O-Doped g-C ₃ N ₄ Nanospheres for Highly Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2019, 11, 32957-32968.	4.0	78
57	Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery. Electrochimica Acta, 2019, 318, 875-882.	2.6	42
58	Molybdenum disulfide quantum dots directing zinc indium sulfide heterostructures for enhanced visible light hydrogen production. Journal of Colloid and Interface Science, 2019, 551, 111-118.	5.0	35
59	MOF-derived nitrogen-doped core–shell hierarchical porous carbon confining selenium for advanced lithium–selenium batteries. Nanoscale, 2019, 11, 6970-6981.	2.8	83
60	Ambient oxidation of Ti ₃ C ₂ MXene initialized by atomic defects. Nanoscale, 2019, 11, 23330-23337.	2.8	147
61	Cascade electronic band structured zinc oxide/bismuth vanadate/three-dimensional ordered macroporous titanium dioxide ternary nanocomposites for enhanced visible light photocatalysis. Journal of Colloid and Interface Science, 2019, 539, 585-597.	5.0	20
62	Type II heterojunction in hierarchically porous zinc oxide/graphitic carbon nitride microspheres promoting photocatalytic activity. Journal of Colloid and Interface Science, 2019, 538, 99-107.	5.0	49
63	Nitrogen-doped graphene in-situ modifying MnO nanoparticles for highly improved lithium storage. Applied Surface Science, 2019, 473, 893-901.	3.1	25
64	Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2018, 12, 43-49.	2.3	7
65	Probing conducting polymers@cadmium sulfide core-shell nanorods for highly improved photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2018, 521, 1-10.	5.0	48
66	Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy, 2018, 47, 266-274.	8.2	132
67	Oxygen self-doped g-C ₃ N ₄ with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale, 2018, 10, 4515-4522.	2.8	247
68	Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na–Se batteries. Journal of Materials Chemistry A, 2018, 6, 22790-22797.	5.2	62
69	Coherent TiO ₂ /BaTiO ₃ heterostructure as a functional reservoir and promoter for polysulfide intermediates. Chemical Communications, 2018, 54, 12250-12253.	2.2	53
70	Boosting Lithium-Ion Storage Capability in CuO Nanosheets via Synergistic Engineering of Defects and Pores. Frontiers in Chemistry, 2018, 6, 428.	1.8	35
71	A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5, 2829-2835.	3.0	18
72	Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction. RSC Advances, 2018, 8, 28625-28631.	1.7	32

#	Article	IF	CITATIONS
73	Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li–S batteries. Nanoscale, 2018, 10, 11861-11868.	2.8	32
74	Amorphous red phosphorus incorporated with pyrolyzed bacterial cellulose as a free-standing anode for high-performance lithium ion batteries. RSC Advances, 2018, 8, 17325-17333.	1.7	10
75	3D Ferroconcreteâ€Like Aminated Carbon Nanotubes Network Anchoring Sulfur for Advanced Lithium–Sulfur Battery. Advanced Energy Materials, 2018, 8, 1801066.	10.2	115
76	SnS ₂ /TiO ₂ nanohybrids chemically bonded on nitrogen-doped graphene for lithium–sulfur batteries: synergy of vacancy defects and heterostructures. Nanoscale, 2018, 10, 15505-15512.	2.8	116
77	Hierarchy Design in Metal Oxides as Anodes for Advanced Lithiumâ€lon Batteries. Small Methods, 2018, 2, 1800171.	4.6	69
78	Stable Carbon–Selenium Bonds for Enhanced Performance in <i>Tremella</i> ‣ike 2D Chalcogenide Battery Anode. Advanced Energy Materials, 2018, 8, 1800927.	10.2	68
79	Slow Photons for Photocatalysis and Photovoltaics. Advanced Materials, 2017, 29, 1605349.	11.1	129
80	Walnut-like Porous Core/Shell TiO ₂ with Hybridized Phases Enabling Fast and Stable Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 10652-10663.	4.0	169
81	Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation. Journal of Materials Science, 2017, 52, 11124-11134.	1.7	35
82	Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 2017, 46, 481-558.	18.7	1,030
83	Anchoring ultrafine metallic and oxidized Pt nanoclusters on yolk-shell TiO2 for unprecedentedly high photocatalytic hydrogen production. Nano Energy, 2017, 38, 118-126.	8.2	91
84	Bio-inspired Murray materials for mass transfer and activity. Nature Communications, 2017, 8, 14921.	5.8	176
85	BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants. Applied Catalysis B: Environmental, 2017, 205, 121-132.	10.8	100
86	Physical and chemical dual-confinement of polysulfides within hierarchically meso-microporous nitrogen-doped carbon nanocages for advanced Li–S batteries. RSC Advances, 2017, 7, 42627-42633.	1.7	11
87	Cocatalyzing Pt/PtO Phase-Junction Nanodots on Hierarchically Porous TiO ₂ for Highly Enhanced Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2017, 9, 29687-29698.	4.0	51
88	Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite. ACS Applied Materials & Interfaces, 2017, 9, 43665-43673.	4.0	83
89	Manganese dioxide nanosheet functionalized sulfur@PEDOT core–shell nanospheres for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 9403-9412.	5.2	112
90	Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors. Journal of Power Sources, 2016, 321, 143-154.	4.0	77

#	Article	IF	CITATIONS
91	Probing the electrochemical behavior of {111} and {110} faceted hollow Cu ₂ O microspheres for lithium storage. RSC Advances, 2016, 6, 97129-97136.	1.7	13
92	High lithium ion battery performance enhancement by controlled carbon coating of TiO ₂ hierarchically porous hollow spheres. RSC Advances, 2016, 6, 70485-70492.	1.7	8
93	Grain Boundaries Enriched Hierarchically Mesoporous MnO/Carbon Microspheres for Superior Lithium Ion Battery Anode. Electrochimica Acta, 2016, 222, 561-569.	2.6	30
94	Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability. Scientific Reports, 2016, 6, 25942.	1.6	56
95	Porous TiO2 urchins for high performance Li-ion battery electrode: facile synthesis, characterization and structural evolution. Electrochimica Acta, 2016, 210, 206-214.	2.6	60
96	Active Fe ₂ O ₃ nanoparticles encapsulated in porous g-C ₃ N ₄ /graphene sandwich-type nanosheets as a superior anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10666-10672.	5.2	94
97	ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants. Applied Catalysis B: Environmental, 2016, 199, 187-198.	10.8	87
98	Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45, 3479-3563.	18.7	1,134
99	Hierarchical TiO ₂ /C nanocomposite monoliths with a robust scaffolding architecture, mesopore–macropore network and TiO ₂ –C heterostructure for high-performance lithium ion batteries. Nanoscale, 2016, 8, 10928-10937.	2.8	38
100	Synergistic promotion of solar-driven H2 generation by three-dimensionally ordered macroporous structured TiO2-Au-CdS ternary photocatalyst. Applied Catalysis B: Environmental, 2016, 184, 182-190.	10.8	143
101	3D interconnected hierarchically macro-mesoporous TiO ₂ networks optimized by biomolecular self-assembly for high performance lithium ion batteries. RSC Advances, 2016, 6, 26856-26862.	1.7	19
102	Enhanced Gas Sensitivity and Selectivity on Aperture-Controllable 3D Interconnected Macro–Mesoporous ZnO Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 8583-8590.	4.0	60
103	Unique walnut-shaped porous MnO ₂ /C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability. Journal of Materials Chemistry A, 2016, 4, 4264-4272.	5.2	53
104	3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy, 2016, 22, 269-277.	8.2	115
105	Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors. Nano Energy, 2016, 22, 255-268.	8.2	97
106	Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Applied Catalysis B: Environmental, 2016, 188, 351-359.	10.8	219
107	Template-free synthesis of hierarchical porous calcium carbonate microspheres for efficient water treatment. RSC Advances, 2016, 6, 472-480.	1.7	27
108	Phases Hybriding and Hierarchical Structuring of Mesoporous TiO ₂ Nanowire Bundles for Highâ€Rate and Highâ€Capacity Lithium Batteries. Advanced Science, 2015, 2, 1500070.	5.6	39

#	Article	IF	CITATIONS
109	Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries. Scientific Reports, 2015, 5, 14686.	1.6	47
110	Hollow Cu ₂ O microspheres with two active {111} and {110} facets for highly selective adsorption and photodegradation of anionic dye. RSC Advances, 2015, 5, 55520-55526.	1.7	22
111	Hierarchically structured porous TiO2 spheres constructed by interconnected nanorods as high performance anodes for lithium ion batteries. Chemical Engineering Journal, 2015, 281, 844-851.	6.6	57
112	Hierarchical nanosheet-constructed yolk–shell TiO ₂ porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 2015, 7, 12979-12989.	2.8	51
113	Calcium Carbonate Nanoplate Assemblies with Directed High-Energy Facets: Additive-Free Synthesis, High Drug Loading, and Sustainable Releasing. ACS Applied Materials & Interfaces, 2015, 7, 15686-15691.	4.0	34
114	Hierarchical Nanotube-Constructed Porous TiO2-B Spheres for High Performance Lithium Ion Batteries. Scientific Reports, 2015, 5, 11557.	1.6	53
115	Highly porous TiO2 hollow microspheres constructed by radially oriented nanorods chains for high capacity, high rate and long cycle capability lithium battery. Nano Energy, 2015, 16, 339-349.	8.2	73
116	Novel 3DOM BiVO ₄ /TiO ₂ nanocomposites for highly enhanced photocatalytic activity. Journal of Materials Chemistry A, 2015, 3, 21244-21256.	5.2	139
117	Tunable macro–mesoporous ZnO nanostructures for highly sensitive ethanol and acetone gas sensors. RSC Advances, 2015, 5, 101910-101916.	1.7	31
118	Fabrication of Upconverting Hybrid Nanoparticles for Near-Infrared Light Triggered Drug Release. Advances in Materials Science and Engineering, 2014, 2014, 1-9.	1.0	6
119	Probing significant light absorption enhancement of titania inverse opal films for highly exalted photocatalytic degradation of dye pollutants. Applied Catalysis B: Environmental, 2014, 150-151, 411-420.	10.8	64
120	Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. Journal of Colloid and Interface Science, 2014, 417, 144-151.	5.0	49
121	Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9699.	5.2	124
122	Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement. Journal of Materials Chemistry A, 2014, 2, 5051.	5.2	70
123	Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Nanoscale, 2014, 6, 6819.	2.8	99
124	Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 14099.	5.2	52
125	Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. Journal of Colloid and Interface Science, 2014, 418, 74-80.	5.0	47
126	Mesoporous Titanium Dioxide (TiO2) with hierarchically 3D dendrimeric architectures: Formation mechanism and highly enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2013, 394, 252-262.	5.0	12

#	Article	IF	CITATIONS
127	High photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption. Journal of Materials Chemistry A, 2013, 1, 15491.	5.2	90
128	Gas leaching as a path to build hierarchical core–corona porous alumina nanostructures with extraordinary pollutant treatment capacity. RSC Advances, 2013, 3, 1699-1702.	1.7	7
129	A comparative study of hierarchically micro-meso-macroporous solid-acid catalysts constructed by zeolites nanocrystals synthesized via a quasi-solid-state crystallization process. Microporous and Mesoporous Materials, 2013, 182, 122-135.	2.2	18
130	Influence of hierarchically porous niobium doped TiO2 supports in the total catalytic oxidation of model VOCs over noble metal nanoparticles. Applied Catalysis B: Environmental, 2013, 142-143, 149-160.	10.8	44
131	Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1394-1400.	5.2	58
132	Direct and rapid quantum dots labelling of Escherichia coli cells. Journal of Colloid and Interface Science, 2013, 393, 438-444.	5.0	21
133	Synthesis of hierarchical fiberlike ordered mesoporous carbons with excellent electrochemical capacitance performance by a strongly acidic aqueous cooperative assembly route. Journal of Materials Chemistry A, 2013, 1, 15447.	5.2	32
134	Tailoring CuO nanostructures for enhanced photocatalytic property. Journal of Colloid and Interface Science, 2012, 384, 1-9.	5.0	162
135	Hierarchically Structured Porous Materials for Energy Conversion and Storage. Advanced Functional Materials, 2012, 22, 4634-4667.	7.8	796
136	One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications. Critical Reviews in Solid State and Materials Sciences, 2012, 37, 1-74.	6.8	170
137	One-pot aqueous route to synthesize highly ordered cubic and hexagonal mesoporous carbons from resorcinol and hexamine. Carbon, 2012, 50, 476-487.	5.4	96
138	Self-generated hierarchically porous titania with high surface area: Photocatalytic activity enhancement by macrochannel structure. Journal of Colloid and Interface Science, 2012, 368, 128-138.	5.0	37
139	Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. Journal of Colloid and Interface Science, 2012, 377, 368-374.	5.0	39
140	Sub-3nm NiO nanoparticles: Controlled synthesis, and photocatalytic activity. Materials Letters, 2012, 81, 245-247.	1.3	29
141	Tuning the structure of a hierarchically porous ZrO2 for dye molecule depollution. Microporous and Mesoporous Materials, 2012, 152, 110-121.	2.2	10
142	Well Shaped Mn ₃ O ₄ Nanoâ€octahedra with Anomalous Magnetic Behavior and Enhanced Photodecomposition Properties. Small, 2011, 7, 475-483.	5.2	131
143	Threeâ€Dimensionally Ordered Macroporous Titania with Structural and Photonic Effects for Enhanced Photocatalytic Efficiency. ChemSusChem, 2011, 4, 1481-1488.	3.6	81
144	Multimodal Zeoliteâ€Betaâ€Based Catalysts with a Hierarchical, Threeâ€level Pore Structure. ChemSusChem, 2011, 4, 1452-1456.	3.6	38

#	Article	IF	CITATIONS
145	Highly Stable and Reusable Multimodal Zeolite TSâ€1 Based Catalysts with Hierarchically Interconnected Threeâ€Level Micro–Meso–Macroporous Structure. Angewandte Chemie - International Edition, 2011, 50, 11156-11161.	7.2	189
146	Wellâ€Organized Zeolite Nanocrystal Aggregates with Interconnected Hierarchically Micro–Meso–Macropore Systems Showing Enhanced Catalytic Performance. Chemistry - A European Journal, 2011, 17, 14987-14995.	1.7	78
147	Influence of the meso-macroporous ZrO2–TiO2 calcination temperature on the pre-reduced Pd/ZrO2–TiO2 (1/1) performances in chlorobenzene total oxidation. Catalysis Today, 2011, 164, 566-570.	2.2	22
148	Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2010, 348, 303-312.	5.0	113
149	Insight into the Growth of Multiple Branched MnOOH Nanorods. Crystal Growth and Design, 2010, 10, 2969-2976.	1.4	39
150	Chemistry of Trimethyl Aluminum: A Spontaneous Route to Thermally Stable 3D Crystalline Macroporous Alumina Foams with a Hierarchy of Pore Sizes. Chemistry of Materials, 2010, 22, 3251-3258.	3.2	41
151	Oneâ€Pot Synthesis of Catalytically Stable and Active Nanoreactors: Encapsulation of Sizeâ€Controlled Nanoparticles within a Hierarchically Macroporous Core@Ordered Mesoporous Shell System. Advanced Materials, 2009, 21, 1368-1372.	11.1	77
152	Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure and Applied Chemistry, 2009, 81, 2265-2307.	0.9	90