
Xue-ren Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3009188/publications.pdf Version: 2024-02-01

XIIE-DEN VIN

#	Article	IF	CITATIONS
1	Molecular basis of the formation and removal of fruit astringency. Food Chemistry, 2022, 372, 131234.	4.2	24
2	Citrus heat shock transcription factor <scp>CitHsfA7</scp> â€mediated citric acid degradation in response to heat stress. Plant, Cell and Environment, 2022, 45, 95-104.	2.8	22
3	Transcription factors AcERF74/75 respond to waterlogging stress and trigger alcoholic fermentation-related genes in kiwifruit. Plant Science, 2022, 314, 111115.	1.7	17
4	ldentification and expression analysis of grape LRK10L-2 genes during grape fruit development. Plant Biotechnology Reports, 2022, 16, 57-70.	0.9	1
5	Application of melatonin in kiwifruit (Actinidia chinensis) alleviated chilling injury during cold storage. Scientia Horticulturae, 2022, 296, 110876.	1.7	31
6	Consensus co-expression network analysis identifies AdZAT5 regulating pectin degradation in ripening kiwifruit. Journal of Advanced Research, 2022, 40, 59-68.	4.4	14
7	The effects of salicylic acid on quality control of horticultural commodities. New Zealand Journal of Crop and Horticultural Science, 2022, 50, 99-117.	0.7	7
8	The red flesh of kiwifruit is differentially controlled by specific activation–repression systems. New Phytologist, 2022, 235, 630-645.	3.5	37
9	An EjbHLH14-EjHB1-EjPRX12 module is involved in methyl jasmonate alleviation of chilling-induced lignin deposition in loquat fruit. Journal of Experimental Botany, 2022, 73, 1668-1682.	2.4	16
10	The Interaction Between CitMYB52 and CitbHLH2 Negatively Regulates Citrate Accumulation by Activating CitALMT in Citrus Fruit. Frontiers in Plant Science, 2022, 13, 848869.	1.7	8
11	Transcriptional and post-transcriptional regulation of ethylene biosynthesis by exogenous acetylsalicylic acid in kiwifruit . Horticulture Research, 2022, 9, .	2.9	15
12	Convergent and divergent regulations of ethylene and abscisic acid biosynthesis during persimmon fruit postharvest ripening. Postharvest Biology and Technology, 2022, 191, 111977.	2.9	2
13	Dof Transcription Factors Are Involved in High CO2 Induced Persimmon Fruit Deastringency. Horticulturae, 2022, 8, 643.	1.2	1
14	Transcriptome analysis reveals the roles of chlorophyll a/b-binding proteins (CABs) and stay-green (SGR) in chlorophyll degradation during fruit development in kiwifruit. New Zealand Journal of Crop and Horticultural Science, 2021, 49, 106-126.	0.7	3
15	Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnology Journal, 2021, 19, 671-688.	4.1	99
16	Transcriptome Analysis Revealed the Roles of Carbohydrate Metabolism on Differential Acetaldehyde Production Capacity in Persimmon Fruit in Response to High-CO ₂ Treatment. Journal of Agricultural and Food Chemistry, 2021, 69, 836-845.	2.4	12
17	The MADS-Box Transcription Factor EjAGL65 Controls Loquat Flesh Lignification via Direct Transcriptional Inhibition of EjMYB8. Frontiers in Plant Science, 2021, 12, 652959.	1.7	6
18	Chinese horticulture: From basic research to industrial applications. New Zealand Journal of Crop and Horticultural Science, 2021, 49, 75-77.	0.7	0

#	Article	IF	CITATIONS
19	Transcription factors DkBZR1/2 regulate cell wall degradation genes and ethylene biosynthesis genes during persimmon fruit ripening. Journal of Experimental Botany, 2021, 72, 6437-6446.	2.4	16
20	Effects of inside-out heat-shock via microwave on the fruit softening and quality of persimmon during postharvest storage. Food Chemistry, 2021, 349, 129161.	4.2	22
21	Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations. Plant Science, 2021, 308, 110927.	1.7	16
22	An ethyleneâ€hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. New Phytologist, 2021, 232, 237-251.	3.5	37
23	A tomato LATERAL ORGAN BOUNDARIES transcription factor, <i>SILOB1</i> , predominantly regulates cell wall and softening components of ripening. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
24	Genomeâ€wide analysis of coding and non oding RNA reveals a conserved miR164â€ <i>NAC</i> regulatory pathway for fruit ripening. New Phytologist, 2020, 225, 1618-1634.	3.5	86
25	Citrus CitERF6 Contributes to Citric Acid Degradation <i>via</i> Upregulation of <i>CitAclα1</i> , Encoding ATP-Citrate Lyase Subunit α. Journal of Agricultural and Food Chemistry, 2020, 68, 10081-10087.	2.4	16
26	Transcriptome co-expression network analysis identifies key genes and regulators of ripening kiwifruit ester biosynthesis. BMC Plant Biology, 2020, 20, 103.	1.6	24
27	Small RNAs With a Big Impact on Horticultural Traits. Critical Reviews in Plant Sciences, 2020, 39, 30-43.	2.7	19
28	The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of <i>FaMYB10</i> and anthocyanin pathway genes. Plant Biotechnology Journal, 2020, 18, 2267-2279.	4.1	82
29	ETHYLENE RESPONSE FACTOR39–MYB8 complex regulates low-temperature-induced lignification of loquat fruit. Journal of Experimental Botany, 2020, 71, 3172-3184.	2.4	54
30	Methyl Jasmonate Enhances Ethylene Synthesis in Kiwifruit by Inducing <i>NAC</i> Genes That Activate <i>ACS1</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 3267-3276.	2.4	39
31	Transcriptome and Phytochemical Analysis Reveals the Alteration of Plant Hormones, Characteristic Metabolites, and Related Gene Expression in Tea (Camellia sinensis L.) Leaves During Withering. Plants, 2020, 9, 204.	1.6	20
32	High CO2/hypoxia-induced softening of persimmon fruit is modulated by DkERF8/16 and DkNAC9 complexes. Journal of Experimental Botany, 2020, 71, 2690-2700.	2.4	21
33	Auto- and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening. Food Chemistry, 2019, 299, 125163.	4.2	31
34	High-CO2/hypoxia-modulated NAC transcription factors involved in de-astringency of persimmon fruit. Scientia Horticulturae, 2019, 252, 201-207.	1.7	10
35	CmMYB#7, an R3 MYB transcription factor, acts as a negative regulator of anthocyanin biosynthesis in chrysanthemum. Journal of Experimental Botany, 2019, 70, 3111-3123.	2.4	55
36	Ternary complex EjbHLH1-EjMYB2-EjAP2-1 retards low temperature-induced flesh lignification in loquat fruit. Plant Physiology and Biochemistry, 2019, 139, 731-737.	2.8	13

#	Article	IF	CITATIONS
37	High-CO ₂ /Hypoxia-Responsive Transcription Factors DkERF24 and DkWRKY1 Interact and Activate <i>DkPDC2</i> Promoter. Plant Physiology, 2019, 180, 621-633.	2.3	34
38	Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Horticulture Research, 2019, 6, 49.	2.9	29
39	C2H2-Type Zinc Finger Proteins (DkZF1/2) Synergistically Control Persimmon Fruit Deastringency. International Journal of Molecular Sciences, 2019, 20, 5611.	1.8	8
40	The persimmon (Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution. Horticulture Research, 2019, 6, 138.	2.9	39
41	Effect of Ethylene on Cell Wall and Lipid Metabolism during Alleviation of Postharvest Chilling Injury in Peach. Cells, 2019, 8, 1612.	1.8	51
42	<i>PpMYB15</i> and <i>PpMYBF1</i> Transcription Factors Are Involved in Regulating Flavonol Biosynthesis in Peach Fruit. Journal of Agricultural and Food Chemistry, 2019, 67, 644-652.	2.4	47
43	<i><scp>BEL</scp>1â€<scp>LIKE HOMEODOMAIN</scp> 11</i> regulates chloroplast development and chlorophyll synthesis in tomato fruit. Plant Journal, 2018, 94, 1126-1140.	2.8	76
44	A transcription factor network responsive to high CO2/hypoxia is involved in deastringency in persimmon fruit. Journal of Experimental Botany, 2018, 69, 2061-2070.	2.4	34
45	EjMYB4 is a transcriptional activator of 4-Coumarate:coenzyme A ligase involved in lignin biosynthesis in loquat (Eriobotrya japonica). Plant Growth Regulation, 2018, 86, 413-421.	1.8	3
46	An ETHYLENE RESPONSE FACTOR-MYB Transcription Complex Regulates Furaneol Biosynthesis by Activating <i>QUINONE OXIDOREDUCTASE</i> Expression in Strawberry. Plant Physiology, 2018, 178, 189-201.	2.3	70
47	Association of BrERF72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes. Horticulture Research, 2018, 5, 22.	2.9	70
48	Transcriptome Analysis Identifies a Zinc Finger Protein Regulating Starch Degradation in Kiwifruit. Plant Physiology, 2018, 178, 850-863.	2.3	109
49	DkNAC7, a novel high-CO2/hypoxia-induced NAC transcription factor, regulates persimmon fruit de-astringency. PLoS ONE, 2018, 13, e0194326.	1.1	8
50	SIMYB1 and SIMYB2 , two new MYB genes from tomato, transcriptionally regulate cellulose biosynthesis in tobacco. Journal of Integrative Agriculture, 2017, 16, 65-75.	1.7	13
51	Involvement of PAL, C4H, and 4CL in Chilling Injury-induced Flesh Lignification of Loquat Fruit. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 127-131.	0.5	28
52	Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit. Plant, Cell and Environment, 2017, 40, 1531-1551.	2.8	92
53	Hypoxiaâ€responsive <i><scp>ERF</scp>s</i> involved in postdeastringency softening of persimmon fruit. Plant Biotechnology Journal, 2017, 15, 1409-1419.	4.1	40
54	EjNAC3 transcriptionally regulates chilling-induced lignification of loquat fruit via physical interaction with an atypical CAD-like gene. Journal of Experimental Botany, 2017, 68, 5129-5136.	2.4	52

Xue-ren Yin

#	Article	IF	CITATIONS
55	Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3. Journal of Experimental Botany, 2017, 68, 3419-3426.	2.4	66
56	A novel ethylene responsive factor CitERF13 plays a role in photosynthesis regulation. Plant Science, 2017, 256, 112-119.	1.7	14
57	Ethylene†and fruit softening. Food Quality and Safety, 2017, 1, 253-267.	0.6	144
58	Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany, 2017, 68, 4929-4938.	2.4	161
59	Characterization of Starch Degradation Related Genes in Postharvest Kiwifruit. International Journal of Molecular Sciences, 2016, 17, 2112.	1.8	49
60	EjODO1, a MYB Transcription Factor, Regulating Lignin Biosynthesis in Developing Loquat (Eriobotrya) Tj ETQq0	00.rgBT /	Overlock 10
61	Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. Plant Journal, 2016, 86, 403-412.	2.8	130
62	Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. Plant, Cell and Environment, 2016, 39, 1780-1789.	2.8	65
63	Roles of APETALA2/Ethylene-Response Factors in Regulation of Fruit Quality. Critical Reviews in Plant Sciences, 2016, 35, 120-130.	2.7	47
64	Systemic induction of photosynthesis via illumination of the shoot apex is mediated by phytochrome B. Plant Physiology, 2016, 172, pp.01202.2016.	2.3	73
65	The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports, 2016, 6, 20151.	1.6	49
66	<i>CitAP2.10</i> activation of the terpene synthase <i>CsTPS1</i> is associated with the synthesis of (+)-valencene in â€~Newhall' orange. Journal of Experimental Botany, 2016, 67, 4105-4115.	2.4	85
67	Isolation, classification and transcription profiles of the Ethylene Response Factors (ERFs) in ripening kiwifruit. Scientia Horticulturae, 2016, 199, 209-215.	1.7	28
68	DkMYB6 is involved in persimmon fruit deastringency, via transcriptional activation on both DkPDC and DkERF. Postharvest Biology and Technology, 2016, 111, 161-167.	2.9	15
69	EjMYB8 Transcriptionally Regulates Flesh Lignification in Loquat Fruit. PLoS ONE, 2016, 11, e0154399.	1.1	27
70	Involvement of DkTGA1 Transcription Factor in Anaerobic Response Leading to Persimmon Fruit Postharvest De-Astringency. PLoS ONE, 2016, 11, e0155916.	1.1	10
71	<i>Ej<scp>AP</scp>2â€l</i> , an <i><scp>AP</scp>2/<scp>ERF</scp></i> gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with <i>Ej<scp>MYB</scp></i> transcription factors. Plant Biotechnology Journal, 2015, 13, 1325-1334.	4.1	112
72	A NAC transcription factor, EjNAC1 , affects lignification of loquat fruit by regulating lignin. Postharvest Biology and Technology, 2015, 102, 25-31.	2.9	64

#	Article	IF	CITATIONS
73	Isolation and Expression of NAC Genes during Persimmon Fruit Postharvest Astringency Removal. International Journal of Molecular Sciences, 2015, 16, 1894-1906.	1.8	19
74	Phenolic Composition and Antioxidant Properties of Different Peach [Prunus persica (L.) Batsch] Cultivars in China. International Journal of Molecular Sciences, 2015, 16, 5762-5778.	1.8	85
75	CrMYB73 , a PH -like gene, contributes to citric acid accumulation in citrus fruit. Scientia Horticulturae, 2015, 197, 212-217.	1.7	35
76	The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers. Scientia Horticulturae, 2015, 194, 278-285.	1.7	46
77	Involvement of CitCHX and CitDIC in Developmental-Related and Postharvest-Hot-Air Driven Citrate Degradation in Citrus Fruits. PLoS ONE, 2015, 10, e0119410.	1.1	15
78	A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.). PLoS ONE, 2015, 10, e0143892.	1.1	75
79	Two Novel Anoxia-Induced Ethylene Response Factors That Interact with Promoters of Deastringency-Related Genes from Persimmon. PLoS ONE, 2014, 9, e97043.	1.1	50
80	Bagging Treatment Influences Production of C6 Aldehydes and Biosynthesis-Related Gene Expression in Peach Fruit Skin. Molecules, 2014, 19, 13461-13472.	1.7	17
81	Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. Journal of Experimental Botany, 2014, 65, 4349-4359.	2.4	138
82	Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus. Molecular Biology Reports, 2014, 41, 4261-4271.	1.0	80
83	The MrWD40-1 Gene of Chinese Bayberry (Myrica rubra) Interacts with MYB and bHLH to Enhance Anthocyanin Accumulation. Plant Molecular Biology Reporter, 2013, 31, 1474-1484.	1.0	65
84	Differential Expression of the CBF Gene Family During Postharvest Cold Storage and Subsequent Shelf-Life of Peach Fruit. Plant Molecular Biology Reporter, 2013, 31, 1358-1367.	1.0	32
85	Differential Expression of Organic Acid Degradation-Related Genes During Fruit Development of Navel Oranges (Citrus sinensis) in Two Habitats. Plant Molecular Biology Reporter, 2013, 31, 1131-1140.	1.0	44
86	The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell, Tissue and Organ Culture, 2013, 115, 285-298.	1.2	60
87	Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bayberry. Plant Cell, Tissue and Organ Culture, 2013, 113, 491-499.	1.2	34
88	Effects of acetylsalicylic acid on kiwifruit ethylene biosynthesis and signaling components. Postharvest Biology and Technology, 2013, 83, 27-33.	2.9	38
89	Standard Addition Quantitative Real-Time PCR (SAQPCR): A Novel Approach for Determination of Transgene Copy Number Avoiding PCR Efficiency Estimation. PLoS ONE, 2013, 8, e53489.	1.1	21
90	Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat. Journal of Experimental Botany, 2013, 65, 4679-4689.	2.4	75

#	Article	IF	CITATIONS
91	Codon usage patterns in Chinese bayberry (Myrica rubra) based on RNA-Seq data. BMC Genomics, 2013, 14, 732.	1.2	42
92	Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency. Journal of Experimental Botany, 2012, 63, 6393-6405.	2.4	110
93	Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics, 2012, 13, 19.	1.2	199
94	Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Scientia Horticulturae, 2012, 147, 118-125.	1.7	124
95	Expression of ethylene response genes during persimmon fruit astringency removal. Planta, 2012, 235, 895-906.	1.6	66
96	Differential expression of kiwifruit ERF genes in response to postharvest abiotic stress. Postharvest Biology and Technology, 2012, 66, 1-7.	2.9	40
97	Ethylene biosynthesis and expression of related genes in loquat fruit at different developmental and ripening stages. Scientia Horticulturae, 2011, 130, 452-458.	1.7	15
98	Kiwifruit <i>EIL</i> and <i>ERF</i> Genes Involved in Regulating Fruit Ripening Â. Plant Physiology, 2010, 153, 1280-1292.	2.3	249
99	Ethylene signal transduction elements involved in chilling injury in non-climacteric loquat fruit. Journal of Experimental Botany, 2010, 61, 179-190.	2.4	69
100	Ethylene-related genes show a differential response to low temperature during â€~Hayward' kiwifruit ripening. Postharvest Biology and Technology, 2009, 52, 9-15.	2.9	53
101	Lipoxygenase Gene Expression in Ripening Kiwifruit in Relation to Ethylene and Aroma Production. Journal of Agricultural and Food Chemistry, 2009, 57, 2875-2881.	2.4	117
102	Volatiles Production and Lipoxygenase Gene Expression in Kiwifruit Peel and Flesh During Fruit Ripening. Journal of the American Society for Horticultural Science, 2009, 134, 472-477.	0.5	15
103	Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. Journal of Experimental Botany, 2008, 59, 2097-2108.	2.4	112