
Jennifer L Gottfried

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3009069/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser-induced breakdown spectroscopy for the detection and characterization of explosives. , 2022, , 269-313.		2
2	Commercial aluminum powders, part II: Energy release rates induced by rapid heating via pulsed laser excitation. Powder Technology, 2022, 399, 117161.	4.2	2
3	The influence of particle size on the fluid dynamics of a laser-induced plasma. Physics of Fluids, 2022, 34, .	4.0	5
4	Ignition and combustion of Perfluoroalkyl-functionalized aluminum nanoparticles and nanothermite. Combustion and Flame, 2022, 242, 112170.	5.2	18
5	Higher time-resolution LASEM with upgraded diagnostics for lab-scale characterization of energy release rates. , 2021, , .		0
6	Chemically driven energetic molecular ferroelectrics. Nature Communications, 2021, 12, 5696.	12.8	6
7	Spatiotemporal and emission characteristics of laser-induced plasmas from aluminum-zirconium composite powders. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 183, 106270.	2.9	13
8	Probing boron thermite energy release at rapid heating rates. Combustion and Flame, 2021, 231, 111491.	5.2	20
9	Acoustic response from metal powders reacting in a laser-induced plasma. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	5
10	Effect of sample morphology on the spectral and spatiotemporal characteristics of laser-induced plasmas from aluminum. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	21
11	Evaluating compositional effects on the laser-induced combustion and shock velocities of Al/Zr-based composite fuels. Combustion and Flame, 2020, 213, 357-368.	5.2	28
12	Defense applications. , 2020, , 275-310.		2
13	Measuring fast and slow energy release from aluminum powders. AIP Conference Proceedings, 2020, , .	0.4	5
14	Plasma surface treatment of aluminum nanoparticles for energetic material applications. Combustion and Flame, 2019, 206, 211-213.	5.2	40
15	Optimizing the Performance of Aluminized Explosives: Laser-Based Measurements of Energy Release and Spectroscopic Diagnostics. , 2019, , .		3
16	Graphitic coated Al nanoparticles manufactured as superior energetic materials via laser ablation synthesis in organic solvents. Applied Surface Science, 2019, 473, 156-163.	6.1	44
17	Estimating the Relative Energy Content of Reactive Materials Using Nanosecond-Pulsed Laser Ablation. MRS Advances, 2018, 3, 875-886.	0.9	19
18	Laboratoryâ€scale Investigation of the Influence of Ageing on the Performance and Sensitivity of an Explosive Containing ϵâ€CLâ€20. Propellants, Explosives, Pyrotechnics, 2018, 43, 616-625.	1.6	16

JENNIFER L GOTTFRIED

#	Article	IF	CITATIONS
19	Energetic Performance of Optically Activated Aluminum/Graphene Oxide Composites. ACS Nano, 2018, 12, 11366-11375.	14.6	99
20	Discriminating volcanic centers with handheld laser-induced breakdown spectroscopy (LIBS). Journal of Archaeological Science, 2018, 98, 112-127.	2.4	38
21	Improving the Explosive Performance of Aluminum Nanoparticles with Aluminum Iodate Hexahydrate (AIH). Scientific Reports, 2018, 8, 8036.	3.3	42
22	Laser-induced air shock from energetic materials (LASEM) method for estimating detonation performance: Challenges, successes and limitations. AIP Conference Proceedings, 2018, , .	0.4	14
23	Estimated Detonation Velocities for TKXâ€50, MADâ€X1, BDNAPM, BTNPM, TKXâ€55, and DAAF using the Laser–induced Air Shock from Energetic Materials Technique. Propellants, Explosives, Pyrotechnics, 2017, 42, 353-359.	1.6	62
24	On the structure and impurities of a nominally homologous set of detonation nanodiamonds. Diamond and Related Materials, 2017, 76, 157-170.	3.9	5
25	Laserâ€induced Deflagration for the Characterization of Energetic Materials. Propellants, Explosives, Pyrotechnics, 2017, 42, 592-602.	1.6	27
26	Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance. Applied Optics, 2017, 56, B47.	2.1	46
27	Indirect ignition of energetic materials with laser-driven flyer plates. Applied Optics, 2017, 56, B134.	2.1	21
28	Energetic material response to ultrafast indirect laser heating. Applied Optics, 2017, 56, B85.	2.1	7
29	Synthesis and Investigation of Advanced Energetic Materials Based on Bispyrazolylmethanes. Angewandte Chemie, 2016, 128, 16366-16369.	2.0	37
30	Synthesis and Investigation of Advanced Energetic Materials Based on Bispyrazolylmethanes. Angewandte Chemie - International Edition, 2016, 55, 16132-16135.	13.8	132
31	Laboratory cale Method for Estimating Explosive Performance from Laserâ€Induced Shock Waves. Propellants, Explosives, Pyrotechnics, 2015, 40, 674-681.	1.6	58
32	Influence of exothermic chemical reactions on laser-induced shock waves. Physical Chemistry Chemical Physics, 2014, 16, 21452-21466.	2.8	62
33	Influence of Molecular Structure on the Laser-Induced Plasma Emission of the Explosive RDX and Organic Polymers. Journal of Physical Chemistry A, 2013, 117, 9555-9563.	2.5	45
34	Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy. Applied Optics, 2013, 52, B10.	1.8	23
35	A New Approach to Elemental Inference in LIBS: A Statistical Model for Spectral Analysis. , 2013, , .		0
36	Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles. Applied Optics, 2012, 51, B13.	1.8	49

3

JENNIFER L GOTTFRIED

#	Article	IF	CITATIONS
37	Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy. Applied Optics, 2012, 51, B83.	1.8	52
38	Laser-Induced Breakdown Spectroscopy for the Standoff Detection of Explosive Residues. , 2012, , .		0
39	Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates. Analytical and Bioanalytical Chemistry, 2011, 400, 3289-3301.	3.7	53
40	Rapid analysis of energetic and geo-materials using LIBS. Materials Today, 2011, 14, 274-281.	14.2	35
41	Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 122-128.	2.9	62
42	Characterization of a Series of Nitrogenâ€Rich Molecules using Laser Induced Breakdown Spectroscopy. Propellants, Explosives, Pyrotechnics, 2010, 35, 268-277.	1.6	45
43	Progress in Standoff LIBS Detection and Identification of Residue Materials. , 2010, , .		0
44	Archaeological applications of laser-induced breakdown spectroscopy: an example from the Coso Volcanic Field, California, using advanced statistical signal processing analysis. Applied Optics, 2010, 49, C120.	2.1	48
45	Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet. Applied Optics, 2010, 49, C168.	2.1	64
46	Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1009-1019.	2.9	154
47	Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Analytical and Bioanalytical Chemistry, 2009, 395, 283-300.	3.7	278
48	as the benchmark for rigorous ab initio theory. Journal of Molecular Spectroscopy, 2009, 255, 13-23.	1.2	44
49	LIBS analysis of geomaterials: Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Applied Geochemistry, 2009, 24, 1125-1141.	3.0	157
50	Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection. Optics Express, 2009, 17, 419.	3.4	71
51	Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2009, 24, 288.	3.0	71
52	Progress in LIBS for landmine detection. Proceedings of SPIE, 2009, , .	0.8	1
53	Strategies for residue explosives detection using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2008, 23, 205-216.	3.0	149
54	Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues. Applied Optics, 2008, 47, G112.	2.1	128

JENNIFER L GOTTFRIED

#	ARTICLE	IF	CITATIONS
55	Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer. Applied Optics, 2008, 47, G48.	2.1	29
56	Laser-induced breakdown spectroscopy for the classification of unknown powders. Applied Optics, 2008, 47, G80.	2.1	30
57	Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 2008, 62, 353-363.	2.2	147
58	New potential energy surfaces for the and states of CH. Molecular Physics, 2007, 105, 1369-1376.	1.7	9
59	Laser-based Detection Methods of Explosives. , 2007, , 279-321.		24
60	Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1399-1404.	2.9	93
61	Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1405-1411.	2.9	150
62	Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX). Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1321-1328.	2.9	71
63	Near-infrared spectroscopy of above the barrier to linearity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2917-2929.	3.4	20
64	Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 999-1014.	2.9	428
65	Near-infrared electronic spectrum of CH2+. Journal of Chemical Physics, 2004, 121, 11527-11529.	3.0	10
66	Near-infrared spectroscopy of H3+ above the barrier to linearity. Journal of Chemical Physics, 2003, 118, 10890-10899.	3.0	41
67	Interaction second virial coefficients from a recent H2–CO potential energy surface. Journal of Chemical Physics, 2000, 112, 4417-4418.	3.0	7