
Luis Armando Diaz-Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3008979/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 2018, 16, 71.	4.2	3,689
2	Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses. Optical Materials, 2006, 28, 560-568.	1.7	119
3	Luminescence and visible upconversion in nanocrystalline ZrO2:Er3+. Applied Physics Letters, 2003, 83, 4903-4905.	1.5	105
4	Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor. Optical Materials, 2005, 27, 1320-1325.	1.7	105
5	Luminescence Concentration Quenching Mechanism in Gd ₂ O ₃ Eu ³⁺ Journal of Physical Chemistry A, 2014, 118, 1390-1396.	1.1	99
6	Luminescent properties and energy transfer in ZrO2:Sm3+ nanocrystals. Journal of Applied Physics, 2003, 94, 3509-3515.	1.1	95
7	Efficient photoluminescence of Dy3+ at low concentrations in nanocrystalline ZrO2. Journal of Solid State Chemistry, 2008, 181, 75-80.	1.4	85
8	Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics, 2010, 2, 204-210.	1.0	74
9	Role of Yb3+ and Er3+ concentration on the tunability of green-yellow-red upconversion emission of codoped ZrO2:Yb3+–Er3+ nanocrystals. Journal of Applied Physics, 2010, 108, .	1.1	73
10	Synthesis, characterization and luminescence properties of ZrO2:Yb3+–Er3+ nanophosphor. Optical Materials, 2005, 27, 1295-1300.	1.7	69
11	Chalcogenide-Bound Erbium Complexes:  Paradigm Molecules for Infrared Fluorescence Emission. Chemistry of Materials, 2005, 17, 5130-5135.	3.2	63
12	Rapid synthesis of ZnO nano-corncobs from Nital solution and its application in the photodegradation of methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 298, 49-54.	2.0	59
13	Low temperature synthesis and structural characterization of nanocrystalline YAG prepared by a modified sol–gel method. Optical Materials, 2005, 27, 1793-1799.	1.7	58
14	Enhanced cooperative absorption and upconversion in Yb3+doped YAG nanophosphors. Optical Materials, 2005, 27, 1305-1310.	1.7	55
15	Evidence of non-radiative energy transfer from the host to the active ions in monoclinic ZrO2:Sm3+. Journal Physics D: Applied Physics, 2001, 34, L83-L86.	1.3	51
16	Monoclinic ZrO2 as a broad spectral response thermoluminescence UV dosemeter. Radiation Measurements, 2003, 37, 187-190.	0.7	51
17	Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chemical Engineering Journal, 2013, 224, 106-113.	6.6	51
18	A review of phosphorescent and fluorescent phosphors for fingerprint detection. Ceramics International, 2021, 47, 10-41.	2.3	51

#	Article	IF	CITATIONS
19	Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation. Optical Materials, 2004, 25, 285-293.	1.7	49
20	Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 169-173.	1.7	48
21	Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 177-181.	1.7	47
22	Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG. Journal of Luminescence, 2003, 102-103, 694-698.	1.5	43
23	Visible and near-infrared light-driven photocatalytic activity of erbium-doped CaTiO3 system. Journal of Molecular Catalysis A, 2015, 410, 19-25.	4.8	43
24	Concentration enhanced red upconversion in nanocrystalline ZrO2Â:ÂEr under IR excitation. Journal Physics D: Applied Physics, 2004, 37, 2489-2495.	1.3	41
25	Strong broad green UV-excited photoluminescence in rare earth (RE=Ce, Eu, Dy, Er, Yb) doped barium zirconate. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1388-1392.	1.7	40
26	Near-Infrared Optical Characteristics of Chalcogenide-Bound Nd3+Molecules and Clusters. Chemistry of Materials, 2007, 19, 2937-2946.	3.2	39
27	Efficient photocatalytic activity of MSnO3 (M: Ca, Ba, Sr) stannates for photoreduction of 4-nitrophenol and hydrogen production under UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 365-373.	2.0	39
28	Luminescence and thermoluminescence induced by Gamma and UV-irradiation in pure and rare earth doped zirconium oxide. Optical Materials, 2002, 19, 195-199.	1.7	37
29	Nanocrystalline tetragonal zirconium oxide stabilization at low temperatures by using rare earth ions: Sm3+ and Tb3+. Optical Materials, 2002, 20, 263-271.	1.7	37
30	Spectroscopic characterization of Nd3+ ions in barium fluoroborophosphate glasses. Optical Materials, 2001, 18, 321-329.	1.7	36
31	Thermoluminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to X- and β-ray irradiation. Optical Materials, 2004, 27, 293-299.	1.7	36
32	Structural study, photoluminescence, and photocatalytic activity of semiconducting BaZrO3:Bi nanocrystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1382-1387.	1.7	35
33	Controlling the white phosphorescence ZnGa2O4 phosphors by surface defects. Ceramics International, 2019, 45, 4972-4979.	2.3	35
34	Luminescence and energy transfer properties of Eu3+ and Gd3+ in ZrO2. Journal of Luminescence, 2014, 146, 398-403.	1.5	33
35	Photocatalytic activity of MAl2O4 (M = Mg, Sr and Ba) for hydrogen production. Fuel, 2017, 188, 197-204.	3.4	33
36	Thermoluminescence and infrared stimulated luminescence in long persistent monoclinic SrAl2O4:Eu2+,Dy3+ and SrAl2O4:Eu2+,Nd3+ phosphors. Optical Materials, 2019, 92, 46-52.	1.7	33

#	Article	IF	CITATIONS
37	Persistent luminescence nanothermometers. Applied Physics Letters, 2017, 111, .	1.5	32
38	Effects of energy back transfer on the luminescence of Yb and Er ions in YAG. Applied Physics Letters, 2000, 76, 2032-2034.	1.5	31
39	Photocatalytic Hydrogen Evolution by Flexible Graphene Composites Decorated with Ni(OH) ₂ Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 1477-1485.	1.5	30
40	Heparin-Based Nanoparticles: An Overview of Their Applications. Journal of Nanomaterials, 2018, 2018, 1-8.	1.5	30
41	Green and red upconverted emission of hydrothermal synthesized Y2O3: Er3+–Yb3+ nanophosphors using different solvent ratio conditions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 174, 164-168.	1.7	29
42	Blue-green upconversion emission in ZrO2:Yb3+ nanocrystals. Journal of Applied Physics, 2008, 104, .	1.1	27
43	Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates. International Journal of Molecular Sciences, 2014, 15, 19239-19252.	1.8	27
44	Comparative study of the spectroscopic properties of Yb3+/Er3+ codoped tellurite glasses modified with R2O (R=Li, Na and K). Journal of Luminescence, 2012, 132, 391-397.	1.5	26
45	Effect of the CTAB concentration on the upconversion emission of ZrO2:Er3+ nanocrystals. Optical Materials, 2006, 29, 31-37.	1.7	24
46	Comparison Between Isothermal Cold and Melt Crystallization of Polylactide/Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-1668.	0.9	24
47	Crystalline order of silver–gold nanocatalysts with hollow-core and alloyed-shell. Catalysis Today, 2009, 147, 211-216.	2.2	24
48	Effect of TEA on the blue emission of ZnO quantum dots with high quantum yield. Optical Materials Express, 2015, 5, 1109.	1.6	24
49	Enhancing the Up-Conversion Emission of ZrO ₂ :Er ³⁺ Nanocrystals Prepared by a Micelle Process. Journal of Physical Chemistry C, 2007, 111, 17110-17117.	1.5	22
50	Thermoluminescence properties of undoped and Tb3+ and Ce3+ doped YAG nanophosphor under UV-, X- and β-ray irradiation. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 357-364.	0.6	22
51	Structural and photoluminescence study of Er–Yb codoped nanocrystalline ZrO2–B2O3 solid solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1423-1429.	1.7	22
52	Visible upconversion emission and non-radiative direct Yb3+ to Er3+ energy transfer processes in nanocrystalline ZrO2:Yb3+,Er3+. Optics and Lasers in Engineering, 2011, 49, 703-708.	2.0	20
53	Photoluminescent and photocatalytic properties of bismuth doped strontium aluminates blended with titanium dioxide. Materials Science in Semiconductor Processing, 2015, 37, 105-111.	1.9	20
54	Optimal co-doping concentrations and dynamics of energy transfer processes for Tm3+-Tb3+and Tm3+-Eu3+in LiYF4crystal hosts. Journal Physics D: Applied Physics, 2001, 34, 3203-3208.	1.3	19

#	Article	IF	CITATIONS
55	Enhancing the Photocatalytic Activity of Sr ₄ Al ₁₄ O ₂₅ : Eu ²⁺ , Dy ³⁺ Persistent Phosphors by Codoping with Bi ³⁺ Ions. Photochemistry and Photobiology, 2016, 92, 231-237.	1.3	19
56	Crystalline and narrow band gap semiconductor BaZrO3: Bi–Si synthesized by microwave–hydrothermal synthesis. Catalysis Today, 2015, 250, 95-101.	2.2	18
57	White light generation from YAG/YAM:Ce3+, Pr3+, Cr3+ nanophosphors mixed with a blue dye under 340nm excitation. Journal of Luminescence, 2014, 154, 185-192.	1.5	17
58	Enhancing the white light emission of SrAl2O4:Ce3+ phosphors by codoping with Li+ ions. Ceramics International, 2016, 42, 16235-16241.	2.3	17
59	Thermally and optically stimulated luminescence in long persistent orthorhombic strontium aluminates doped with Eu, Dy and Eu, Nd. Optical Materials, 2017, 67, 91-97.	1.7	17
60	Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals. Journal of Applied Physics, 2008, 104, .	1.1	16
61	Efficient Near Infrared to Visible and Nearâ€Infrared Upconversion Emissions in Transparent (Tm ³⁺ , Er ³⁺)â€Î±â€Sialon Ceramics. Journal of the American Ceramic Society, 2017, 100, 224-234.	1.9	16
62	Strong Visible Cooperative Up-Conversion Emission in ZrO ₂ :Yb ³⁺ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2005, 5, 1480-1486.	0.9	15
63	Photoluminescence characterization of porous YAG: Yb3+–Er3+ nanoparticles. Journal of Luminescence, 2014, 153, 21-28.	1.5	15
64	Efficient hydrogen generation by ZnAl2O4 nanoparticles embedded on a flexible graphene composite. Renewable Energy, 2020, 152, 634-643.	4.3	15
65	UV photochemical synthesis of heparin-coated gold nanoparticles. Gold Bulletin, 2014, 47, 21-31.	1.1	14
66	Exact solution to the general non-radiative energy transfer master equations in crystalline materials. Journal of Luminescence, 2000, 91, 233-241.	1.5	13
67	Green EuAlO3:Eu2+ nanophosphor for applications in WLEDs. Optical Materials, 2014, 37, 520-524.	1.7	13
68	Long-lasting green, yellow, and red phosphorescence of carbon dots embedded on ZnAl ₂ O ₄ nanoparticles synthesized by a combustion method. Journal Physics D: Applied Physics, 2018, 51, 415104.	1.3	13
69	Evolution of partially polarized light through non-depolarizing anisotropic media. Optics Communications, 2000, 173, 57-71.	1.0	12
70	Tunable white light from photo- and electroluminescence of ZnO nanoparticles. Journal Physics D: Applied Physics, 2014, 47, 015104.	1.3	12
71	Analysis of experimental Nd3+ emission transients with fast sub-microsecond decay component and a subsequent non-exponential long-term decay with Monte-Carlo simulations. Journal of Luminescence, 1998, 78, 69-86.	1.5	11
72	Evidence of energy transfer among Nd ions in Nd:YAG driven by a mixture of exchange and multipolar interactions. Optical Materials, 1998, 10, 319-326.	1.7	11

#	Article	IF	CITATIONS
73	Synthesis and photoluminescence of Y2O3:Yb3+–Er3+ nanofibers. Microelectronics Journal, 2008, 39, 551-555.	1.1	11
74	Structural and Chemical Characterization of Yb ₂ O ₃ -ZrO ₂ System by HAADF-STEM and HRTEM. Microscopy and Microanalysis, 2009, 15, 46-53.	0.2	11
75	Tuning from green to red the upconversion emission of Y2O3:Er3+–Yb3+ nanophosphors. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	11
76	Effect of Yb3+ concentration on the green-yellow upconversion emission of SrGe4O9:Er3+ phosphors. Ceramics International, 2019, 45, 16911-16917.	2.3	11
77	Antifungal and Cytotoxic Evaluation of Photochemically Synthesized Heparin-Coated Gold and Silver Nanoparticles. Molecules, 2020, 25, 2849.	1.7	11
78	Free volume effects on the fluorescence characteristics of sol–gel glasses doped with quinine sulfate. Optical Materials, 1999, 13, 327-332.	1.7	10
79	Effect of PMMA impregnation on the fluorescence quantum yield of sol–gel glasses doped with quinine sulfate. Optical Materials, 2001, 17, 415-418.	1.7	10
80	Nanoparticle thin films of nanocrystalline YAG by pulsed laser deposition. Optical Materials, 2005, 27, 1217-1220.	1.7	10
81	Synthesis and Characterization of Amorphous SiO ₂ Nanowires Derived from a Polymeric Precursor. Journal of Nanoscience and Nanotechnology, 2008, 8, 997-1002.	0.9	10
82	Biomolecule Assisted Hydrothermal Synthesis of Chainlike Network of Silver Sulfide Nanostructures. Journal of Nanoscience and Nanotechnology, 2008, 8, 986-992.	0.9	10
83	Highly efficient hydrogen generation of Bil3 nanoplates decorated with Ag nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 15962-15974.	3.8	10
84	Effect of thermal treatment on luminescence properties of long persistent CaAl2O4:Eu2+,Dy3+ synthesized by combustion method. Optical Materials, 2020, 101, 109763.	1.7	10
85	Neodymium-to-erbium nonradiative energy transfer and fast initial fluorescence decay of the ^4F_3/2 state of neodymium in garnet crystals. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 2731.	0.9	9
86	Optically stimulated luminescence properties of nanocrystalline Y3Al5O12 phosphor exposed to β radiation. Optical Materials, 2005, 27, 1245-1249.	1.7	9
87	Effect of Eu 3+ concentration on the photocatalytic activity of LaSr 2 AlO 5 powders. Inorganic Chemistry Communication, 2015, 59, 63-67.	1.8	9
88	Cooperative Pair Driven Quenching of Yb ³⁺ Emission in Nanocrystalline ZrO ₂ :Yb ³⁺ . Journal of Nano Research, 0, 5, 121-134.	0.8	8
89	Photocatalytic Activity and Optical Properties of Blue Persistent Phosphors under UV and Solar Irradiation. International Journal of Photoenergy, 2016, 2016, 1-8.	1.4	8
90	Efficient solar removal of acetaminophen contaminant from water using flexible graphene composites functionalized with Ni@TiO2:W nanoparticles. Journal of Environmental Management, 2021, 290, 112665.	3.8	8

#	Article	IF	CITATIONS
91	The non-radiative energy transfer in high acceptor concentration codoped Nd,Ho:YAG and Nd,Er:YAG. Optics Communications, 1996, 129, 273-283.	1.0	7
92	Energy Back-Transfer and other Nonradiative Energy-Transfer Processes in Yb[sup 3+], Er[sup 3+]:Y[sub 3]Al[sub 5]O[sub 12]. Journal of the Electrochemical Society, 2002, 149, J31.	1.3	7
93	BaZrO ₃ :YB NANOPHOSPHOR FOR EFFICIENT UP-CONVERSION LIGHT EMISSION. Progress in Electromagnetics Research Letters, 2009, 11, 139-148.	0.4	7
94	Effect of solvent on the up- and downconversion emissions of Y_2O_3:Yb^3+â^'Er^3+ nanofibers synthesized by a hydrothermal method. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 649.	0.9	7
95	Effect of Crystal Size and Ag Concentration on the Thermoluminescent Response of Pure and Ag-Doped LiF Cubes. Nano, 2016, 11, 1650041.	0.5	7
96	Thermoluminescent response and kinetic parameters of Eu3+-doped LiF crystals exposed to X-rays. Journal of Luminescence, 2017, 182, 160-165.	1.5	7
97	Effect of the Er3+ Co-dopant on the Green Upconversion Emission of LaSr2AlO5:Yb3+ Phosphors. Journal of Electronic Materials, 2018, 47, 6567-6574.	1.0	7
98	Enhancement of Visible Upconversion Emission in Y2O3:Er3+-Yb3+by Addition of Thiourea and LiOH in the Phosphor Synthesis. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	6
99	Photocatalytic Activity of LaSr ₂ AlO ₅ :Eu Ceramic Powders. Photochemistry and Photobiology, 2015, 91, 505-509.	1.3	6
100	Effect of Pt loading on the hydrogen production of CNT/Pt composites functionalized with carboxylic groups. International Journal of Hydrogen Energy, 2020, 45, 27012-27025.	3.8	6
101	Direct energy transfer and migration among Cr ions in the Cr, Nd:GSGG luminescent system. Optical Materials, 2001, 16, 221-226.	1.7	5
102	Temperature effect in the crystallite size and the photoluminescence of nanocrystalline ZrO 2 :Sm3+phosphor. , 2004, , .		5
103	White light emission from a blue polymer light emitting diode combined with <scp>YAG</scp> : <scp>C</scp> e ³⁺ nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 651-655.	0.8	5
104	Anisotropic media with orthogonal eigenpolarizations. Journal of Optics, 2002, 4, 419-423.	1.5	4
105	Concentration and crystallite size dependence of the photoluminescence in YAG:Ce3+nanophosphor. , 2004, , .		4
106	Green upconversion emission dependence on size and surface residual contaminants in nanocrystalline ZrO2:Er3+. Journal of Sol-Gel Science and Technology, 2012, 63, 473-480.	1.1	4
107	Effect of Synthesis Temperature on Morphological and Luminescent Properties of Lithium Fluoride Crystals. Journal of Nanoscience and Nanotechnology, 2017, 17, 5612-5616.	0.9	4
108	Photoluminescence and thermoluminescence of YAG:Ce3+,Tb3+nanocrystalline under UV-, X- and β-irradiation. , 2003, , .		3

7

#	Article	IF	CITATIONS
109	Photoluminescence of bound rare earth nanoscale complexes. Optical Materials, 2006, 29, 12-18.	1.7	3
110	Dynamics of the Green and Red Upconversion Emissions inYb3+-Er3+-CodopedY2O3Nanorods. Journal of Nanomaterials, 2010, 2010, 1-8.	1.5	3
111	Role of the Hydrothermal Synthesis Conditions on the Structure and Morphology of Co-Doped Y ₂ O ₃ :Er ³⁺ -Yb ³⁺ Nanostructured Materials. Journal of Nano Research, 2010, 9, 109-116.	0.8	3
112	NaOH-controlled upconversion of nanocrystalline BaZrO _{3:Er,Yb phosphor. International Journal of Nanotechnology, 2013, 10, 1055.}	0.1	2
113	Fingerprint detection on low contrast surfaces using phosphorescent nanomaterials. AIP Conference Proceedings, 2019, , .	0.3	2
114	Effect of the urea concentration on the luminescence and photocatalytic properties of Sr2CeO4 powders synthesized by a combustion method. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410, 113139.	2.0	2
115	X-ray diffraction evidence of the single solid solution character of the mixed [TmxY1â^x]3Al5O12 crystalline phosphor. Optical Materials, 2001, 18, 225-230.	1.7	1
116	Second-harmonic imaging of ZnO nanoparticles. , 2007, , .		1
117	Structural and photoluminescence characterization of nanocrystalline YAG: Er3+prepared with the addition of PVA and UREA. , 2007, , .		1
118	Effect of ammonia on luminescent properties of YAG:Ce3+,Pr3+nanophosphors. , 2010, , .		1
119	UVA mediated synthesis of gold nanoparticles in pharmaceutical-grade heparin sodium solutions. , 2013, , .		1
120	Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study. , 2017, , ,		1
121	Photorefractive phase conjugation of pulses: A numerical and analytical comparison. Journal of Soviet Laser Research, 1992, 13, 261-268.	0.2	Ο
122	<title>Nonradiative energy transfer process in the system
Sm<formula><sup><roman>3</roman></sup></formula>+:
ZrO<formula><inf><roman>2</roman></inf></formula> prepared by sol-gel technique</title> . , 2001, ,		0
123	Fluorescence characterization of the ternary system TMQ-PBDBD365-POPOP-dye-doped polystyrene optical fiber under gamma and UV irradiation. , 2001, , .		0
124	<title>Spectroscopic characterization of Nd<formula><sup><roman>3</roman></sup></formula>+
doped barium fluoroborophosphate and fluorosulphatephosphate glasses</title> .,2001,,.		0
125	Facile synthesis and optical applications of ceramic nanophosphors. , 2008, , .		О