Maria Cristiana Nunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3008905/publications.pdf

Version: 2024-02-01

430754 526166 1,327 31 18 27 citations h-index g-index papers 31 31 31 1503 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations. Chemistry - A European Journal, 2007, 13, 8478-8488.	1.7	207
2	Incorporation of <i>Chlorella vulgaris </i> and <i>Spirulina maxima </i> biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 2010, 90, 1656-1664.	1.7	194
3	Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA's source. LWT - Food Science and Technology, 2013, 50, 312-319.	2.5	118
4	Rheological behaviour and microstructure of pea protein/ $\hat{\mathbb{P}}$ -carrageenan/starch gels with different setting conditions. Food Hydrocolloids, 2006, 20, 106-113.	5.6	94
5	Effect of Psyllium fibre content on the textural and rheological characteristics of biscuit and biscuit dough. Bioactive Carbohydrates and Dietary Fibre, 2014, 3, 96-105.	1.5	73
6	Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. Algal Research, 2020, 50, 101998.	2.4	65
7	Vegetable proteins and milk puddings. Colloids and Surfaces B: Biointerfaces, 2003, 31, 21-29.	2.5	58
8	The effect of starch isolation method on physical and functional properties of Portuguese nuts starches. I. Chestnuts (Castanea sativa Mill. var. Martainha and Longal) fruits. Food Hydrocolloids, 2012, 27, 256-263.	5.6	54
9	Novel foods with microalgal ingredients – Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. Journal of Food Engineering, 2012, 110, 182-189.	2.7	54
10	Properties of protein powder prepared from Cape hake by-products. Journal of Food Engineering, 2012, 108, 268-275.	2.7	43
11	Developing consumer acceptable biscuits enriched with Psyllium fibre. Journal of Food Science and Technology, 2015, 52, 4830-4840.	1.4	41
12	Microalgal cell disruption: Effect on the bioactivity and rheology of wheat bread. Algal Research, 2020, 45, 101749.	2.4	38
13	Microalgae biomass interaction in biopolymer gelled systems. Food Hydrocolloids, 2011, 25, 817-825.	5.6	37
14	The effect of starch isolation method on physical and functional properties of Portuguese nut starches. II. Q.Ârotundifolia Lam. and Q.Âsuber Lam. acorns starches. Food Hydrocolloids, 2013, 30, 448-455.	5.6	34
15	Gelled vegetable desserts containing pea protein, \hat{l}^{ϱ} -carrageenan and starch. European Food Research and Technology, 2006, 222, 622-628.	1.6	33
16	Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioactivity. Foods, 2020, 9, 579.	1.9	31
17	From egg yolk/κ-Carrageenan dispersions to gel systems: Linear viscoelasticity and texture analysis. Food Hydrocolloids, 2011, 25, 654-658.	5.6	26
18	Acorn Flour as a Source of Bioactive Compounds in Gluten-Free Bread. Molecules, 2020, 25, 3568.	1.7	26

#	Article	IF	Citations
19	Innovative and Healthier Dairy Products through the Addition of Microalgae: A Review. Foods, 2022, 11, 755.	1.9	20
20	Improving the Nutritional, Structural, and Sensory Properties of Gluten-Free Bread with Different Species of Microalgae. Foods, 2022, 11, 397.	1.9	19
21	Impact of Acorn Flour on Gluten-Free Dough Rheology Properties. Foods, 2020, 9, 560.	1.9	16
22	Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility. Foods, 2021, 10, 3159.	1.9	15
23	Microalgae Biomass as a Novel Functional Ingredient in Mixed Gel Systems. , 2008, , 487-494.		8
24	Rheology Methods as a Tool to Study the Impact of Whey Powder on the Dough and Breadmaking Performance of Wheat Flour. Fluids, 2020, 5, 50.	0.8	7
25	Effect of thermal treatment and composition on the mechanical properties of pea / kappa-carrageenan / starch desserts. Special Publication - Royal Society of Chemistry, 2009, , 54-64.	0.0	5
26	Flow Behaviour of Vegetable Beverages to Replace Milk. Springer Proceedings in Materials, 2020, , 83-87.	0.1	4
27	Physical-sensory evaluation of a cereal bar with quinoa: a preliminary study. Biomedical and Biopharmaceutical Research, 2018, 15, 25-36.	0.0	3
28	New Alternatives to Milk From Pulses: Chickpea and Lupin Beverages With Improved Digestibility and Potential Bioactivities for Human Health. Frontiers in Nutrition, 0, 9, .	1.6	3
29	Effect of principal ingredients on quality of cookies with dietary fibre. Special Publication - Royal Society of Chemistry, 2009, , 475-483.	0.0	1
30	Preliminary sensory evaluation of salty crackers with grape pomace flour. Biomedical and Biopharmaceutical Research, 2020, 17, 1-11.	0.0	0
31	Physicochemical Characterisation of Psyllium Fibre. , 0, , 572-577.		O